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A Note on Congruences of

Infinite Bounded Involution Lattices
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Abstract

We prove that an infinite (bounded) involution lattice and even
pseudo–Kleene algebra can have any number of congruences between 2
and its number of elements or equalling its number of subsets, regardless
of whether it has as many ideals as elements or as many ideals as
subsets. Furthermore, when they have at most as many congruences
as elements, these involution lattices and even pseudo–Kleene algebras
can be chosen such that all their lattice congruences preserve their
involutions, so that they have as many congruences as their lattice
reducts. Under the Generalized Continuum Hypothesis, this means
that an infinite (bounded) involution lattice and even pseudo–Kleene
algebra can have any number of congruences between 2 and its number
of subsets, regardless of its number of ideals. Consequently, the same
holds for antiortholattices, a class of paraorthomodular Brouwer–Zadeh
lattices. Regarding the shapes of the congruence lattices of the lattice–
ordered algebras in question, it turns out that, as long as the number
of congruences is not strictly larger than the number of elements, they
can be isomorphic to any nonsingleton well–ordered set with a largest
element of any of those cardinalities, provided its largest element is
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strictly join–irreducible in the case of bounded lattice–ordered algebras
and, in the case of antiortholattices with at least 3 distinct elements,
provided that the predecessor of the largest element of that well–ordered
set is strictly join–irreducible, as well; of course, various constructions
can be applied to these algebras to obtain congruence lattices with
different structures without changing the cardinalities in question. We
point out sufficient conditions for analogous results to hold in an
arbitrary variety.

2010 Mathematics Subject Classification: 06B10, 06F99, 06D30.

Keywords: (bounded) involution lattice, (pseudo–)Kleene algebra,
antiortholattice, (ordinal, horizontal) sum, congruence lattice.

1 Introduction

As part of our main result from [4], we have proven that, under the Gen-
eralized Continuum Hypothesis, an infinite lattice can have any number
of congruences between 2 and its number of subsets. In this paper, we
prove that the same holds for infinite (bounded) involution lattices and even
infinite pseudo–Kleene algebras. Thus the same holds for infinite antiortho-
lattices, which are algebraic structures with pseudo–Kleene algebra reducts
originating in the study of quantum logics [6, 7, 8, 9, 10, 15, 16]. Moreover,
we can let all these lattice–ordered algebras have any numbers of ideals,
while keeping this property on congruences. Furthermore, if we restrict to
numbers of congruences that are either smaller than the numbers of elements
or equal to the numbers of subsets of these algebras, then we do not need to
enforce the Continuum Hypothesis.

To obtain our main theorem: Theorem 2, we extract from our method
in [4] the general results that hold in any variety; see Lemma 2 and the
paragraph right after this lemma, in which we point out that these properties
could be applied in other varieties to obtain similar results; all we need in
such a variety V is some construction as the one from [14] for obtaining, from
an infinite algebra A, an algebra B of the same cardinality as A, having one
congruence more than A; if we can obtain B such that it includes A and has
the congruences of a certain form (see conditions s○V and c○V in Section 5),
then the general method from Lemma 2 can be applied directly, so we may
conclude that there exist, in V, algebras with the same cardinality as A
and with any number of congruences smaller than the cardinality of A and
larger than the smallest number of congruences that A can have such that
an algebra B as above can exist for that algebra A. The construction we
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provide produces algebras with certain shapes for their congruence lattices,
so a condition as above ensures that such a variety V has members with
those particular congruence lattices (see Proposition 1).

Note that, in the finite case, these results on numbers of congruences
do not hold, due to the limited number of configurations. The finite case
for lattices has been treated in [2, 17], the one for semilattices in [3], and
the one for involution lattices, pseudo–Kleene algebras and antiortholattices
in [15].

2 Some Notations

All algebras will be designated by their underlying sets. By trivial algebra
we mean one–element algebra, and by simple algebra we mean algebra with
at most two congruences.

We denote by N the set of the natural numbers and by N∗ = N \ {0}. q
denotes the disjoint union. For any set M , we denote by |M | the cardinality
of M and by P(M) the set of the subsets of M . If M is a nonempty set, then
Part(M) and (Eq(M),∩,∨,∆M ,∇M ) will denote the bounded lattices of the
partitions and the equivalences of M , respectively, where we keep the order
of the lattice operations from [11]; also, we denote by eq : Part(M)→ Eq(M)
the canonical lattice isomorphism; for any finite partition {M1, . . . ,Mn},
eq({M1, . . . ,Mn}) will be streamlined to eq(M1, . . . ,Mn). If M is an ordered
set, then we denote the set of its maximal elements by Max(M).

Let V be a variety of algebras of a similarity type τ and A and B
be algebras with reducts belonging to V. Following [8, 15], we denote by
A ∼=V B the fact that the τ–reducts of A and B are isomorphic, and by
ConV(A) and SV(A) the sets of the congruences and the subalgebras of
the τ–reduct of A, respectively. Obviously, for any θ ∈ ConV(A) and any
S ∈ SV(A), we have θ ∩ S2 ∈ ConV(S). If V is the variety of lattices or
that of bounded lattices, then we eliminate the index V from the previous
notations.

Now let σ be a similarity type of reducts of τ–algebras and W be a
variety of algebras of type σ. Recall from [12, Corollary 2, p. 51] that
ConV(A) is a complete sublattice of Eq(A), from which it immediately
follows that ConV(A) is a complete bounded sublattice of ConW(A). In
particular, if V is a variety of algebras with lattice reducts, then ConV(A) is
a complete bounded sublattice of Con(A).

If n ∈ N∗ and the type τ contains constants κ1, . . . , κn, then we denote
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by ConVκ1...κn(A) = {θ ∈ ConV(A) : κA1 /θ = {κA1 }, . . . , κAn /θ = {κAn }}: the
set of the congruences of A with the classes of κA1 , . . . , κ

A
n singletons. It is

easy to see that ConVκ1...κn(A) is a complete sublattice of ConV(A) and thus
a bounded lattice [9, 15].

Let L be a (bounded) lattice. Then the dual of L will be denoted by Ld.

For any X ⊆ L and any a, b ∈ L, we denote by [X)L and [a)L the filter
of L generated by X and by a, respectively, and by (X]L and (a]L the ideal
of L generated by X and by a, respectively; we also denote [a, b]L = [a)L∩(b]L
and [a, b)L = [a, b]L \ {b}.

The sets of the filters, principal filters, ideals and principal ideals of L
will be denoted by Filt(L), PFilt(L), Id(L) and PId(L), respectively. Of
course, we have: Con(Ld) = Con(L), Filt(Ld) = Id(L) and Id(Ld) = Filt(L).

Recall that the prime ideals of L are exactly the set complements of its
prime filters. Moreover, if C is a chain, then all its proper filters are prime
and the same goes for its ideals, hence the proper ideals of C are exactly
the set complements of its proper filters, in particular |Filt(C)| = |Id(C)|.
For any n ∈ N∗, Cn will denote the n–element chain.

If the lattice L has a 0, then L is said to be 0–regular iff, for all
θ, ζ ∈ Con(L), 0/θ = 0/ζ implies θ = ζ.

Recall that L satisfies the Ascending, respectively the Descending Chain
Condition (abbreviated ACC and DCC, respectively) iff, for any sequence
(xn)n∈N of elements of L such that xk ≤ xk+1, respectively xk ≥ xk+1 for all
k ∈ N, there exists an m ∈ N such that xk = xk+1 for all k ≥ m. Clearly,
any lattice that satisfies the ACC has all ideals principal and, dually, any
lattice satisfying the DCC has all filters principal.

3 The Algebras We Are Working With and the
Basic Constructions of Ordinal and Horizontal
Sum

Definition 1 We call a lattice with involution or involution lattice (in brief,
i–lattice) an algebra (L,∧,∨, ·′) of type (2, 2, 1), where (L,∧,∨) is a lattice
and ·′ is an order–reversing operation such that a′′ = a for all a ∈ L, called
involution.

A bounded involution lattice (in brief, bi–lattice) is an algebra
(L,∧,∨, ·′, 0, 1) of type (2, 2, 1, 0, 0), where (L,∧,∨, 0, 1) is a bounded lat-
tice and (L,∧,∨, ·′) is an i–lattice.
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Distributive bi–lattices are called De Morgan algebras.
We consider the following condition on a bi–lattice L:

k○ for all a, b ∈ L, a ∧ a′ ≤ b ∨ b′

A pseudo–Kleene algebra is a bi–lattice that satisfies condition k○. The
involution of a pseudo–Kleene algebra is called Kleene complement.

Distributive pseudo–Kleene algebras (that is De Morgan algebras which
satisfy condition k○) are called Kleene algebras or Kleene lattices.

Linearly ordered (bounded) involution lattices are called (bounded) invo-
lution chains, abbreviated as in the case of arbitrary lattices above; linearly
ordered Kleene lattices are called Kleene chains; the same goes for the lattice–
ordered structures in the next definition.

A bi–lattice L is said to be paraorthomodular iff, for all a, b ∈ L, if
a ≤ b and a′ ∧ b = 0, then a = b.

A bi–lattice L is said to be orthomodular iff, for all a, b ∈ L, if a ≤ b,
then a ∨ (a′ ∧ b) = b.

Of course, any orthomodular lattice L is a paraorthomodular pseudo–
Kleene algebra (having a ∧ a′ = 0 and a ∨ a′ = 1 for all a ∈ L).

We will denote by I, BI and KL the variety of involution lattices,
bounded involution lattices and pseudo–Kleene algebras, respectively.

An i–lattice with underlying set L and involution ·′ will often be desig-
nated by (L, ·′). Unless specified otherwise, the involution of an i–lattice will
be denoted ·′. Obviously, the involution of any i–lattice L is a dual lattice
automorphism of L, hence L is self–dual and thus it has |Filt(L)| = |Id(L)|.
Regarding congruences:

Remark 1 Clearly, for any bi–lattice L, ConBI01(L) = ConBI0(L). More-
over, for any variety V whose members have bi–lattice reducts and any
member A of V, we have ConV01(A) = ConV0(A).

We will often use the remarks in this paper without referencing them.
Of course, any Boolean algebra A is a Kleene lattice with the involution

equalling its Boolean complement, and, since the Boolean complement is
preserved by all lattice congruences, we have ConI(A) = Con(A). Remember
that Boolean algebras are exactly the distributive orthomodular lattices.
Furthermore, any orthomodular lattice L is a paraorthomodular pseudo–
Kleene algebra with all its lattice congruences preserving its involution, so
that ConI(L) = Con(L) [1].
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Definition 2 [6, 7, 8, 9, 10, 16] A Brouwer–Zadeh lattice (in brief, BZ–
lattice) is an algebra (L,∧,∨, ·′, ·∼, 0, 1) of type (2, 2, 1, 1, 0, 0) such that
(L,∧,∨, ·′, 0, 1) is a pseudo–Kleene algebra and the unary operation ·∼, called
Brouwer complement, is order–reversing and satisfies a ∧ a∼ = 0 and
a ≤ a∼∼ = a∼′ for all a ∈ L.

The Brouwer complement on a BZ–lattice L defined by 0∼ = 1 and
a∼ = 0 for all a ∈ L \ {0} is called the trivial Brouwer complement.

The following equation in the language of BZ–lattices is called the Strong
De Morgan condition (SDM): (x ∧ y)∼ ≈ x∼ ∨ y∼.

A PBZ∗–lattice is a paraorthomodular BZ–lattice L that satisfies the
following weakening of the SDM: (x ∧ x′)∼ ≈ x∼ ∨ x′∼.

An antiortholattice is a PBZ∗–lattice with the property that 0 and 1 are
its only elements whose Kleene complements are bounded lattice complements.

We denote by BZL the variety of BZ–lattices. PBZ∗–lattices form a
variety, as well, but antiortholattices form a proper universal class [6, 7, 8,
9, 10, 16].

Antiortholattices are exactly the PBZ∗–lattices whose Brouwer com-
plement is trivial. An antiortholattice satisfies the SDM iff it has the 0
meet–irreducible. Moreover, any pseudo–Kleene algebra with the 0 meet–
irreducible, endowed with the trivial Brouwer complement, becomes an
antiortholattice (which, of course, satisfies the SDM). See a strenghthening
of the latter property in the next section, and [6, 7, 8, 9, 10, 16] for all these
properties.

We now recall the definition of the horizontal sum of a family of non-
trivial bounded lattices, obtained by glueing those lattices at their bottom
elements and at their top elements. Let (Li,≤Li , 0Li , 1Li)i∈I be a nonempty
family of nontrivial bounded lattices. Then the horizontal sum of the fam-
ily (Li,≤Li , 0Li , 1Li)i∈I is the bounded lattice (�i∈ILi,≤, 0, 1) defined in
this way: let L = qi∈ILi and ε the equivalence on L that collapses only
the bottom elements of these lattices, as well as their top elements: ε =
eq({{0Li : i ∈ I}, {1Li : i ∈ I}} ∪ {{x} : x ∈ L \ {0Li , 1Li : i ∈ I}}) ∈ Eq(L);
denote by 0 = 0Li/ε and 1 = 1Li/ε for some i ∈ I; then, for every i ∈ I,
ε ∩ L2

i = ∆Li ∈ Con(Li), so Li ∼= Li/ε; we identify each Li with Li/ε, by
identifying x with x/ε for all x ∈ L, thus obtaining 0 = 0Li and 1 = 1Li for

all i ∈ I; now we set �i∈ILi = L/ε and ≤=
⋃
i∈I
≤Li .

Clearly, the horizontal sum as a binary operation between nontrivial
bounded lattices is associative and commutative. We may also note that,
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for any nontrivial bounded lattice L, we have C2 � L = L, so we obtain a
nontrivial horizontal sum (that is a horizontal sum which strictly includes
each of its summands) iff we have at least two summands of cardinality
strictly greater than 2.

We denote by M|I| = �i∈IC3 the modular lattice of length 3 and
cardinality |I|+ 2, which is clearly simple.

If (Li, ·′i)i∈I is a nonempty family of nontrivial bi–lattices, then the
horizontal sum of this family is the bi–lattice (�i∈ILi, ·′), whose underlying
bounded lattice is the horizontal sum of the family of the bounded lattice
reducts (Li)i∈I and whose involution is defined by: ·′ |Li= ·′i for all i ∈ I.

See in [14, 15] the congruence lattice of any horizontal sum of nontrivial
bounded lattices or bi–lattices.

Let (L,≤L) be a lattice with top element 1L and (M,≤M ) a lattice
with bottom element 0M . Recall that the ordinal sum of L with M is
the lattice (L ⊕M,≤) obtained by glueing the top element of L and the
bottom element of M together, thus stacking M on top of L. For the precise
definition, let ε be the equivalence on LqM that only collapses 1L with 0M :
ε = eq({{1L, 0M}} ∪ {{x} : x ∈ LqM \ {1L, 0M}}) ∈ Eq(LqM). We note
that ε ∩ L2 = ∆L ∈ Con(L) and ε ∩M2 = ∆M ∈ Con(M), so that we may
identify L with L/ε and M with M/ε by identifying each x ∈ LqM with x/ε.
Now we let L⊕M = (LqM)/ε and ≤=≤L ∪ ≤M ∪{(x, y) : x ∈ L, y ∈M}.

Note that Filt(L ⊕ M) = Filt(M) ∪ {F ∪ L : F ∈ Filt(L)} and
Id(L⊕M) = Id(L) ∪ {L ∪ I : I ∈ Id(M)}, thus |Filt(L⊕M)| = |Filt(L)|+
|Filt(M)|−1 and |Id(L⊕M)| = |Id(L)|+ |Id(M)|−1, where we let κ−λ = κ
for any infinite cardinal number κ and any cardinal number λ < κ.

If, for every α ∈ Con(L) and every β ∈ Con(M), we denote by α ⊕ β
the equivalence on L ⊕M whose classes are those of α and β, excepting
the classes of the common element 1L = 0M of L and M in L ⊕M mod-
ulo α, respectively β, along with the union of latter two classes: α ⊕ β =
eq((L/α \ 1L/α) ∪ (M/β \ 0M/β) ∪ {1L/α ∪ 0M/β}), then, clearly, α⊕ β ∈
Con(L ⊕M). Furthermore, since L and M are sublattices of L ⊕M , for
every θ ∈ Con(L ⊕M), we have θ ∩ L2 ∈ Con(L) and θ ∩M2 ∈ Con(M),
and clearly θ = (θ ∩ L2)⊕ (θ ∩M2). Therefore the map (α, β) 7→ α⊕ β is a
lattice isomorphism from Con(L)× Con(M) to Con(L⊕M).

Clearly, the ordinal sum of bounded lattices is associative and so is the
operation ⊕ on congruences of those bounded lattices.
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4 Some Particular Constructions of Lattices and
Lattice–ordered Algebras and Their Congruences

Let L be a lattice with top element, f : L→ Ld a dual lattice isomorphism
and (K, ·′K) a bi–lattice. Then L ⊕ K ⊕ Ld, and in particular L ⊕ Ld in
the case when K is the one–element chain, becomes an i–lattice with the
involution ·′ : L⊕K ⊕Ld → L⊕K ⊕Ld defined by: ·′ |L= f , ·′ |K= ·′K and
·′ |Ld= f−1. Whenever we refer to a bi–lattice with a bounded lattice reduct
of this form: L⊕K ⊕ Ld, we consider it endowed with the involution from
this canonical construction.

Notice that, if L is a bounded lattice and K is a pseudo–Kleene algebra,
then L⊕K ⊕ Ld satisfies k○, thus L⊕K ⊕ Ld is a pseudo–Kleene algebra.
Moreover, it is straightforward that, if L is a nontrivial bounded lattice
and K ∈ KL, then the pseudo–Kleene algebra L ⊕ K ⊕ Ld becomes an
antiortholattice when endowed with the trivial Brouwer complement [9, 16,
10]. In particular, for any bounded lattice L, L ⊕ Ld is a pseudo–Kleene
algebra, which becomes an antiortholattice when endowed with the trivial
Brouwer complement.

Remark 2 [14, 9, 16, 10, 17, 15] For any i–lattice (A, ·′), if we denote by
U ′ = {(a′, b′) : (a, b) ∈ U} for all U ⊆ A2, then we clearly have ConI(A) =
{θ ∈ Con(A) : θ = θ′}.

From this it is immediate that, for any bounded lattice L and any bi–
lattice K, ConI(L⊕K ⊕ Ld) = {α⊕ β ⊕ α′ : α ∈ Con(L), β ∈ ConI(K)} ∼=
Con(L)× ConI(K), in particular ConI(L⊕ Ld) = {α⊕ α′ : α ∈ Con(L)} ∼=
Con(L).

Remark 3 [7, 9, 15] It is routine to prove that, for any antiortholattice A,
ConBZL(A) = ConBZL0(A) ∪ {∇A} = ConBI0(A) ∪ {∇A} ∼= ConBI0(A)⊕ C2.

Therefore, if L is a nontrivial bounded lattice and K ∈ KL, then the
antiortholattice L⊕K⊕Ld has ConBZL(L⊕K⊕Ld) = ConBI0(L⊕K⊕Ld)∪
{∇L⊕K⊕Ld} = {α⊕ β ⊕ α′ : α ∈ Con0(L), β ∈ ConI(K)}} ∪ {∇L⊕K⊕Ld} ∼=
(Con0(L)× ConI(K))⊕ C2.

Thus, if L is 0–regular, so that Con0(L) = {∆L}, then ConBZL(L ⊕
K ⊕ Ld) = {∆L ⊕ β ⊕∆Ld : β ∈ ConI(K)} ∪ {∇L⊕K⊕Ld} ∼= ConI(K)⊕ C2,
thus |ConBZL(L⊕K ⊕ Ld)| = |ConI(K)|+ 1.

In particular, ConBZL(C2 ⊕ K ⊕ C2) = {eq(K/β ∪ {{0}, {1}}) : β ∈
ConI(K)} ∪ {∇C2⊕K⊕C2} ∼= ConI(K) ⊕ C2, thus |ConBZL(C2 ⊕ K ⊕ C2)| =
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|ConI(K)|+ 1 and, for any 0–regular nontrivial bounded lattice L, the an-
tiortholattice L⊕ Ld is simple.

Notation 1 We will denote by (B(L),≤) the bounded lattice obtained from
a lattice (L,≤L) by adding a new top element 1 and a new bottom element 0:
B(L) = Lq {0} q {1} and ≤=≤L ∪{(0, x), (x, 1) : x ∈ B(L)} \ {(1, 0)}.

Note that, for any lattice L, 0 is meet–irreducible in B(L); also, 0 is
strictly meet–irreducible in B(L) iff L has a smallest element. Of course,
dually for 1. So L is a bounded lattice iff B(L) = C2 ⊕ L⊕ C2.

We have |B(L)| = |L| + 2 and Filt(B(L)) = {{1},B(L)} ∪ {F ∪ {1} :
F ∈ Filt(L)}, Id(B(L)) = {{0},B(L)} ∪ {I ∪ {0} : I ∈ Id(L)}, so that
|Filt(B(L))| = |Filt(L)|+ 2 and |Id(B(L))| = |Id(L)|+ 2.

If (L, ·′L) is an involution lattice, then (B(L), ·′) is a bounded involution
lattice with ·′ |L= ·′L, 0′ = 1 and 1′ = 0. Clearly, (L, ·′L) satisfies condition
k○ iff (B(L), ·′) satisfies this condition, case in which B(L) is a pseudo–Kleene

algebra and, furthermore, it becomes an antiortholattice when endowed with
the trivial Brouwer complement.

Remark 4 Let L be a lattice and let us keep in mind that, if L ∈ I, then
B(L) ∈ BI.

Let θ ∈ Con(L) and α ∈ Con(B(L)).

We will consider the equivalence on B(L) whose classes are those of θ
along with the singletons {0} and {1}: ζ = eq(L/θ ∪ {{0}, {1}}). Clearly,
ζ ∩ L2 = θ.

We will also consider the restriction of α to L: β = α ∩ L2. Note that:
α = eq(L/β ∪ {{0}, {1}}) iff α ∈ Con01(B(L)).

From the fact that 0 is meet–irreducible and 1 is join–irreducible in B(L)
it is immediate that the equivalence eq({0}, L, {1}) on B(L) with singleton
classes of 0 and 1 and all other elements in the same class is a lattice
congruence of B(L). Thus eq({0}, L, {1}) ∈ Con01(B(L)). Hence, if L ∈ I,
then eq({0}, L, {1}) ∈ ConBI01(B(L)).

Moreover, ζ ∈ Con01(B(L)), and, if L ∈ I and θ ∈ ConI(L), then
ζ ∈ ConBI01(B(L)).

Since L is a sublattice of B(L), we have β ∈ Con(L). If L ∈ I, then L
is an i–sublattice of B(L), so, if α ∈ ConI(B(L)), then β ∈ ConI(L).

Therefore:

• Con01(B(L)) = {eq(L/γ ∪ {{0}, {1}}) : γ ∈ Con(L)};
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• if L ∈ I, then ConBI01(B(L)) = {eq(L/γ ∪ {{0}, {1}}) : γ ∈ ConI(L)}.

See in [14, 9, 15] the congruences of any horizontal sum of nontrivial bounded
(involution) lattices. Now let us look at a particular case of horizontal sum:
we consider a bounded (involution) lattice L having |L| > 2 and the lattice C22 ,
organized as a bi–lattice either as the four–element Boolean algebra or as
the horizontal sum C3 � C3 of two copies of the three–element involution
chain. We denote the incomparable elements of C22 by a and b. Let H be the
horizontal sum of L with the lattice C22 . In the case when L is a bi–lattice,
we may organize H as a bi–lattice either as the horizontal sum L� C22 of L
with the four–element Boolean algebra or as the horizontal sum C3 � L� C3
of L with two copies of the three–element involution chain; the following hold
for any of these two possible definitions of the involution on the lattice C22 .
See the following diagrams, in which this construction is applied to B(M)
instead of L, for M an (involution) lattice.

Note that Filt(H) = (Filt(L) \ {L}) ∪ {{a, 1}, {b, 1}, H} and Id(H) =
(Id(L) \ {L})∪ {{0, a}, {0, b}, H}, so |Filt(H)| = |Filt(L)|+ 2 and |Id(H)| =
|Id(L)|+ 2.

Clearly, if L satisfies k○, which means that L is a pseudo–Kleene algebra,
then the first of these two horizontal sums, namely that of L with the four–
element Boolean algebra, satisfies k○, as well, thus, for this definition of the
involution, H becomes a pseudo–Kleene algebra.

Remark 5 With the previous notations, for any element x ∈ L \ {0, 1},
S = {0, a, x, b, 1} is a bounded sublattice of H and a simple lattice since
S ∼=M3. Hence, if a lattice congruence α of H collapses any of the elements
0, a, x, b, 1, so that the restriction α ∩ S2 of α to the bounded sublattice S
of H is a nontrivial congruence of S, then α ∩ S2 = ∇S, thus α collapses 0
and 1 and thus α = ∇H . Therefore, if α 6= ∇H , then the classes of 0, a, b, 1
modulo α are singletons, that is α ∈ Con01(H), a/α = {a} and b/α = {b}.

Moreover, for any θ ∈ Con01(L), the equivalence eq(L/θ ∪ {{a}, {b}}),
whose classes are those of θ along with the singletons {a} and {b}, is clearly
a lattice congruence of H, and it is an i–lattice congruence of H if θ ∈
ConBI01(L).

These properties and the fact that L is a bounded (involution) sublattice
of H, so that, for any (involution) lattice congruence α of H, the restriction
α ∩ L2 is an (involution) lattice congruence of L, prove that:

• Con(H) = {eq(L/θ ∪ {{a}, {b}}) : θ ∈ Con01(L)} ∪ {∇H} ∼= Con01(L)
⊕ C2;
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• if L ∈ BI, so that H ∈ BI, as well, then ConI(H) = {eq(L/θ ∪
{{a}, {b}}) : θ ∈ ConBI01(L)} ∪ {∇H} ∼= ConBI01(L)⊕ C2.

Note from the above that, if the bounded lattice L is 0–regular, then H is
simple as a lattice, thus also as an i–lattice.

Now let us look at a construction we have used in [4, 14, 15]: let M
be a lattice and let us consider the bounded lattice H = B(M) � C22 , with
the incomparable elements of C22 denoted a and b. Then |H| = |M | + 4,
Filt(H) = {{1}, {a, 1}, {b, 1}, H} ∪ {F ∪ {1} : F ∈ Filt(M)} and Id(H) =
{{0}, {0, a}, {0, b}, H}∪{I∪{0} : I ∈ Id(M)}, thus |Filt(H)| = |Filt(M)|+4
and |Id(H)| = |Id(M)|+ 4.

If M is an i–lattice, then B(M) becomes a bi–lattice with the involution
that takes 0 to 1 and vice–versa and restricts to the involution of M . As
pointed out above, H can be organized as a bi–lattice either as the horizontal
sum of bi–lattices H = B(M) � C22 of the bi–lattice B(M) with the four–
element Boolean algebra or as the horizontal sum of bi–lattices H = C3 �
B(M) � C3 of the bi–lattice B(M) with two copies of the three–element
involution chain:

(B(M) � C22 , ·′):

rr rr
0

a b = a′

1
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Q
Q

Q
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Q

(C3 � B(M) � C3, ·′):
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a = a′ b = b′
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Q

�
�
�

�
�

�

Q
Q
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If M is an i–lattice that satisfies k○, then B(M) is a bi–lattice that satisfies k○,
so B(M) is a pseudo–Kleene algebra. In this case, the horizontal sum
H = B(M) � C22 of the pseudo–Kleene algebra B(M) with the four–element
Boolean algebra satisfies k○, as well, thus H is a pseudo–Kleene algebra.

Remark 6 With the previous notations, from the remarks above and the
fact that B(M) \ {0, 1} = M , we obtain:

• Con(H) = {eq(M/θ ∪ {{0}, {a}, {b}, {1}}) : θ ∈ Con(M)} ∪ {∇H} ∼=
Con(M)⊕ C2, so |Con(H)| = |Con(M)|+ 1;

• if M ∈ I, so that H ∈ BI, then, for either of the definitions above of the
involution of H, we have ConI(H) = {eq(M/θ ∪ {{0}, {a}, {b}, {1}}) :
θ ∈ ConI(M)}∪{∇H} ∼= ConI(M)⊕C2, so |ConI(H)| = |ConI(M)|+1.
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Con(H):� �� �(eq({0}, {a}, {b}, {1},M)]Con(H)
∼= Con(M)r

∆H

req({0}, {a}, {b}, {1},M)

r∇H

ConI(H):� �� �(eq({0}, {a}, {b}, {1},M)]ConI(H)
∼= ConI(M)r

∆H

req({0}, {a}, {b}, {1},M)

r∇H

See also [4, 14, 15].

Remark 7 Let L be a lattice. Since the partitions of L are among the
subsets of P(L) of cardinality at most |L|, we have |Con(L)| ≤ |Eq(L)| =
|Part(L)| ≤ (2|L|)|L| = 2|L|·|L|, so that |Con(L)| ≤ |Eq(L)| ≤ 2|L| if L is
infinite. Actually, by [2, 5], if L is finite, then |Con(L)| ≤ 2|L|−1, so L has
at most as many congruences as subsets regardless of whether it is infinite.

Concerning the numbers of filters and ideals of L, we have |L| =
|PFilt(L)| = |PId(L)| ≤ |Filt(L)|, |Id(L)| ≤ |P(L)| = 2|L|. Thus, under the
Generalized Continuum Hypothesis, if L is infinite, then |Filt(L)|, |Id(L)| ∈
{|L|, 2|L|}, while, if, for some infinite cardinal number ν, L has {|Filt(L)|,
|Id(L)|} = {ν, 2ν}, then |L| = ν.

Example 1 Let ν be an infinite cardinal and C be a well–ordered set with
top element having |C| = ν.

Then C is a bounded chain with all filters principal, thus it has |Id(C)| =
|Filt(C)| = |PFilt(C)| = |C| = ν. Hence the Kleene chain C ⊕ Cd has
|Filt(C ⊕ Cd)| = |Id(C ⊕ Cd)| = |Filt(C)|+ |Id(C)| − 1 = ν + ν − 1 = ν.

For any nonempty subset S of C \ {0C , 1C}, if, for each a ∈ ({0C} ∪
S) \Max(S), a+ is the successor of a in the well–ordered set {0C} ∪ S, let
us denote by θS the equivalence on C whose classes are the nonempty sets
[a, a+)C for all a as above, along with {x ∈ C : (∀a ∈ S) (a ≥ x)} if this
set is nonempty: θS = eq({[a, a+)C : a ∈ ({0C} ∪ S) \Max(S)} ∪ ({{x ∈ C :
(∀a ∈ S) (a ≥ x)}} \ {∅})).

Since C is a chain, each of its equivalences with all classes convex
is a lattice congruence of C [11, 13, 14], hence θS ∈ Con(C) for each
S ∈ P(C \ {0C , 1C}) \ {∅}. Now, if S, T ∈ P(C \ {0C , 1C}) \ {∅} and S 6= T ,
so that, say, there exists an a ∈ S \ T , then [a, a+)C ∈ C/θS \ C/θT , thus
θS 6= θT .

Hence S 7→ θS is an injective map from P(C\{0C , 1C})\{∅} to Con(C).
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Therefore 2ν = 2ν−2 − 1 = |P(C \ {0C , 1C}) \ {∅}| ≤ |Con(C)| ≤ 2ν,
hence |Con(C)| = 2ν . Thus |Con(C⊕Cd)| = |Con(C)| · |Con(C)| = 2ν · 2ν =
2ν .

We may also notice that C ⊕ Cd becomes an antiortholattice when en-
dowed with the trivial Brouwer complement and the following hold.
Con0(C) = {eq({{0C}} ∪ (C \ {0C})/θ) : θ ∈ Con(C \ {0C})} ∼= Con(C \
{0C}). Since the chain C \ {0C} is also well ordered and of cardinal-
ity ν, we have |Con(C \ {0C})| = 2ν. Hence |Con0(C)| = 2ν, and, since
ConBI01(C ⊕ Cd) = {θ ⊕ θ′ : θ ∈ Con0(C)} ∼= Con0(C), it follows that
|ConBI01(C ⊕ Cd)| = |Con0(C)| = 2ν . Thus the antiortholattice C ⊕ Cd has
|ConBZL(C ⊕ Cd)| = |ConBI01(C ⊕ Cd) ∪ {∇C⊕Cd}| = 2ν + 1 = 2ν .

Example 2 [4, 14] Let ν be an infinite cardinality and T a set with |T | = ν.
Let us consider the following bounded sublattice of the Boolean algebra CT2 :

M = {(xt)t∈T ⊆ C2 : |{t ∈ T : xt = 1}| < ℵ0} ∪ {1C
T
2 }.

Then |M | = ν, thus |M ⊕Md| = ν + ν = ν. M ⊕Md is a Kleene
lattice (with the canonical definition for its involution) and it becomes an
antiortholattice when endowed with the trivial Brouwer complement.

M satisfies the DCC, thus it has all filters principal, but it has as
many ideals as subsets. So |M | = |Filt(M)| = ν and |Id(M)| = 2ν, thus
|Filt(M ⊕Md)| = |Id(M ⊕Md)| = ν + 2ν − 1 = 2ν .

Since M is a distributive lattice and thus it has at least as many
congruences as ideals, it follows that M has as many congruences as subsets:
|Con(M)| = 2ν . Thus |Con(M ⊕Md)| = |Con(M)| · |Con(M)| = 2ν ·2ν = 2ν

and |ConI(M ⊕Md)| = |Con(M)| = 2ν .

Note that M is 0–regular. Indeed, let θ ∈ Con0(M), so that 0C
T
2 /θ =

{0CT2 }, and assume by absurdum that there exist x = (xt)t∈T ∈ M and
y = (yt)t∈T ∈ M such that (x, y) ∈ θ, but x 6= y. Then xk 6= yk for some
k ∈ T ; say xk = 0 and yk = 1. Let z = (zt)t∈T ∈ CT2 with zk = 1 and zt = 0

for all t ∈ T \ {k}, so that z ∈ M . Then yk ∧ zk = 1, hence y ∧ z 6= 0C
T
2 .

Thus (0C
T
2 , y ∧ z) = (x ∧ z, y ∧ z) ∈ θ, so that 0C

T
2 6= y ∧ z ∈ 0C

T
2 /θ = {0CT2 },

and we have a contradiction.

Therefore Con0(M) = {∆M}, thus Con01(M ⊕ Md) = {∆M⊕Md},
so ConBI01(M ⊕ Md) = {∆M⊕Md} and hence the antiortholattice M ⊕
Md is simple: ConBZL(M ⊕ Md) = ConBI01(M ⊕ Md) ∪ {∇M⊕Md} =
{∆M⊕Md ,∇M⊕Md}.
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5 The Theorems

Throughout the rest of this paper, V will be an arbitrary variety of algebras
of the same similarity type.

Let (I,≤) be a nonempty ordered set and (Aµ)µ∈I a family of members
of V. Recall that (Aµ)µ∈I is called a directed system of members of V iff it
satisfies the following condition, stating that each Aλ is a proper subalgebra
of every Aµ with λ < µ:

s○V for all λ, µ ∈ I with λ < µ, Aλ ⊆ Aµ and Aλ ∈ SV(Aµ) \ {Aµ}

otherwise written:

s○V for all λ, µ ∈ I with λ < µ, Aλ ( Aµ and Aλ ∈ SV(Aµ)

Of course, if (Aµ)µ∈I satisfies condition s○V, then, for any ι ∈ I, we have:
Aι is nontrivial iff Aµ is nontrivial for each µ ∈ I with ι ≤ µ.

If (Aµ)µ∈I is a directed system, then we can define the directed union

of (Aµ)µ∈I to be the member A of V with A =
⋃
µ∈I

Aµ and, for every ?

belonging to the signature of V and every µ ∈ I, ?A |Aµ= ?Aµ .
Note that, if (Aµ)µ∈I is a directed system, then so is (Aµ)µ∈J for every

nonempty subset J of I, thus, trivially, for each µ ∈ I, Aµ is the directed
union of the family (Aλ)λ∈I,λ≤µ.

The following condition states that the proper nontrivial congruences
of every Aµ are exactly the equivalences on Aµ having an Aλ with λ < µ as
unique nonsingleton class:

c○V for all µ ∈ I, ConV(Aµ) = {∆Aµ ,∇Aµ}∪
{eq({Aλ} ∪ {{x} : x ∈ Aµ \Aλ}) : λ ∈ I, λ < µ}

or, equivalently, that the nontrivial congruences of every Aµ are exactly its
equivalences having an Aλ with λ ≤ µ as unique nonsingleton class:

c○V for all µ ∈ I, ConV(Aµ) = {∆Aµ}∪
{eq({Aλ} ∪ {{x} : x ∈ Aµ \Aλ}) : λ ∈ I, λ ≤ µ}

Note that a singleton family satisfies condition c○V iff its member is a
simple algebra from V.

If V is the variety of lattices or that of bounded lattices, then we denote
the conditions s○V and c○V, simply, by s○ and c○, respectively.
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Before proceeding towards the main results, let us take a look at the
structures that the poset (I,≤) and the family (Aµ)µ∈I ordered by set
inclusion need to have so that conditions s○V and c○V can be satisfied.

Remark 8 Let (I,≤) be a nonempty ordered set and (Aµ)µ∈I be a directed
system of nontrivial members of V which satisfies conditions s○V and c○V.
Then:

• the map µ 7→ Aµ from the poset (I,≤) to the poset ((Aµ)µ∈I ,⊆) is an
order–preserving bijection;

• if (I,≤) is a chain, then so is ((Aµ)µ∈I ,⊆), and the map µ 7→ Aµ from
(I,≤) to ((Aµ)µ∈I ,⊆) is a lattice isomorphism.

Indeed, the map µ 7→ Aµ from I to (Aµ)µ∈I is clearly surjective; by condition
s○V, it is also order–preserving and injective; thus it is an order–preserving

bijection between these two posets. Hence the statement for the particular
case when (I,≤) is a chain.

Now let µ ∈ I and let us denote by (µ]I = {λ ∈ I : λ ≤ µ}. Let us
consider the restriction of the map above to the order ideal (µ]I , and also
consider the map Aλ 7→ eq({Aλ}∪{{x} : x ∈ Aµ\Aλ}) defined on (Aλ)λ∈(µ]I .
The latter map is clearly injective and order–preserving, and its image does
not contain ∆Aµ since each algebra Aλ is nontrivial, hence, by condition
c○V, the image of this map is ConV(Aµ) \ {∆Aµ}. It follows that:

• the map λ 7→ Aλ from ((µ]I ,≤) to ((Aλ)λ∈(µ]I ,⊆) and the map Aλ 7→
eq({Aλ} ∪ {{x} : x ∈ Aµ \ Aλ}) from ((Aλ)λ∈(µ]I ,⊆) to (ConV(Aµ) \
{∆Aµ},⊆) are order–preserving bijections, thus so is their composition,
namely the map λ 7→ eq({Aλ} ∪ {{x} : x ∈ Aµ \ Aλ}) from (µ]I to
(ConV(Aµ) \ {∆Aµ},⊆); in particular, |ConV(Aµ)| = |(µ]I |+ 1;

• thus: ((µ]I ,≤) has a least element iff ((Aλ)λ∈(µ]I ,⊆) has a least element
iff (ConV(Aµ)\{∆Aµ},⊆) has a least element iff ConV(Aµ) has a single
atom iff Aµ is subdirectly irreducible;

• if ((µ]I ,≤) is a chain, then so are ((Aλ)λ∈(µ]I ,⊆) and (ConV(Aµ) \
{∆Aµ},⊆), thus the maps above are lattice isomorphisms;

• thus, if ((µ]I ,≤) is a chain and it has a least element, so that it is
a bounded chain, then ((µ]I ,≤), ((Aλ)λ∈(µ]I ,⊆) and ConV(Aµ) are
complete chains such that ((µ]I ,≤) ∼= ((Aλ)λ∈(µ]I ,⊆) and ConV(Aµ) ∼=
C2 ⊕ ((µ]I ,≤) ∼= C2 ⊕ ((Aλ)λ∈(µ]I ,⊆).
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The next two lemmas offer a method to construct, in any variety V,
a family of algebras with any numbers of congruences, provided for every
successor ordinal µ+1 with µ > 0 and any family (Aλ)2≤λ≤µ of members of V
satisfying conditions s○V and c○V, we can construct an algebra Aµ+1 from V
such that the family (Aλ)2≤λ≤µ+1 also satisfies conditions s○V and c○V:
that is, an algebra Aµ+1 from V which includes every member of the family
(Aλ)2≤λ≤µ and whose nontrivial congruences are exactly its equivalences
having one of the members of (Aλ)2≤λ≤µ+1 as unique nonsingleton class.
Additionally, if we let A2 be infinite, of a cardinality ν, and the construction
lets |Aµ+1| differ from |Aµ| by a cardinality less than ν, so that we have, in
fact, |Aµ+1| = |Aµ|, then, for any ordinal τ with |τ | ≤ ν, we can obtain a
family (Aλ)2≤λ≤τ of algebras of cardinality ν whose numbers of congruences
take every value between 2 and |τ |.

Lemma 1 [4, Lemma 3.2] Let ι be a limit ordinal, σ an ordinal with σ < ι,
I = {µ : σ ≤ µ < ι}, (Aµ)µ∈I a family of members of V and Aι the directed
union of the family (Aµ)µ∈I . If the family (Aµ)µ∈I satisfies conditions s○V
and c○V, then the family (Aµ)µ∈I∪{ι} also satisfies conditions s○V and c○V.

Lemma 2 Let τ be an ordinal, I = {µ : 2 ≤ µ ≤ τ} and (Aµ)µ∈I be a
family of nontrivial members of V that satisfies conditions s○V and c○V.

(i) Then, for all µ ∈ I, ConV(Aµ) is isomorphic to the chain {λ : 1 ≤ λ ≤
µ}, in particular ConV(Aµ) is a well–ordered set with |ConV(Aµ)| = |µ|.

(ii) Assume that A2 is infinite and has |A2| = ν ≥ |τ |, that, for each
ordinal µ ∈ I such that µ + 1 ∈ I, we have |Aµ+1| = |Aµ|, and that,
for each limit ordinal ι ∈ I, Aι is the directed union of the family
(Aλ)λ∈I,λ<ι. Then |Aλ| = ν for each λ ∈ I.

Proof: (i) Let µ ∈ I. By Remark 8, since I = {λ : 2 ≤ λ ≤ τ} is a chain
with least element 2 and thus {λ : 2 ≤ λ ≤ µ} is a chain with least element 2,
we have ConV(Aµ) ∼= C2 ⊕ {λ : 2 ≤ λ ≤ µ} ∼= {λ : 1 ≤ λ ≤ µ}.
(ii) We apply induction. By the hypothesis, |A2| = ν.

Now let ι ∈ I \ {2}, which means that ι is an ordinal with 3 ≤ ι ≤ τ .

If ι is a successor ordinal, ι = µ + 1 for a (unique) ordinal µ with
2 ≤ µ < τ and such that |Aµ| = ν, then |Aι| = |Aµ| = ν by the assumption
in the enunciation of (ii).
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If ι is a limit ordinal such that, for all ordinals µ with 2 ≤ µ < ι,

|Aµ| = ν, then ν = |A2| ≤ |Aι| ≤
∑

2≤λ<ι
|Aµ| =

∑
2≤λ<ι

ν ≤ |ι| · ν ≤ |τ | · ν = ν

since ν ≥ |τ |. 2

Proposition 1 Let κ ≥ 3 be a cardinal number, ι the smallest ordinal with
|ι| = κ and I = {µ : 2 ≤ µ < ι}.

If there exists a family (Aµ)µ∈I of nontrivial members of V that satisfies
conditions s○V and c○V, then, for any nonsingleton well–ordered set (S,≤)
having a largest element and |S| < κ, there exists a member A of the family
(Aµ)µ∈I such that ConV(A) is isomorphic to (S,≤).

Proof: Let 1S be the largest element of (S,≤) and let us denote by
Sji(S) the set of the strictly join–irreducible elements of the bounded chain
(S,≤), that is the elements of this chain that have an (obviously unique)
predecessor. Of course, if S is finite, then Sji(S) = S \ {min(S,≤)}.

Let σ and τ be ordinals with |σ| = |τ | = |S|, such that τ is a successor
ordinal and σ is a limit ordinal. Then τ ∈ I and, provided σ exists (which,
of course, is not the case if S is finite, case in which 1S ∈ Sji(S)), we also
have σ ∈ I.

By Lemma 2, (i), a member A of the family (Aµ)µ∈I whose congruence

lattice is isomorphic to (S,≤) is: A =

{
Aσ, if 1S /∈ Sji(S),

Aτ , if 1S ∈ Sji(S).
2

We will use the general method offered by Lemma 2 in Theorem 2 below,
much in the same way as it has been used in [4] to obtain the next theorem;
we revisit this method to obtain the cases that do not follow directly from
this Theorem 1 as described in Remark 10, namely the case in which our
i–lattices have as many ideals as elements, along with the cases in which
they have as many congruences as their lattice reducts; but first we are
going to point out that, when applied to an infinite simple lattice A2, our
construction produces a family of lattices each with as many elements, ideals
and filters as A2.

Lemma 3 [4, Lemma 3.1] Let I be an ideal of a lattice K such that K
satisfies the following condition:

g○I for all (xn)n∈N ⊆ K, if xn > xn+1 for all n ∈ N,
then xn ∈ I for all but finitely many n ∈ N.

Then every nonprincipal filter of K is generated by a filter of I.
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Theorem 1 [4, Theorem 1.1] For any infinite cardinal number ν and any
cardinal number κ with 2 ≤ κ ≤ ν or κ = 2ν , there exists a bounded lattice
Mν,κ with |Mν,κ| = |Filt(Mν,κ)| = ν, |Id(Mν,κ)| = 2ν and |Con(Mν,κ)| = κ.
Furthermore, Mν,2ν can be chosen to be distributive.

Under the Generalized Continuum Hypothesis, with ν, κ and the nota-
tions as in the previous theorem, the lattices Mν,κ and Md

ν,κ have the only
possible values for the cardinalities of their sets of filters and ideals under
the condition that these cardinalities are different.

Remark 9 With ν, κ and the notations from Theorem 1, if κ ≤ ν, then,
additionally, for any successor ordinal τ with |τ | = κ, Mν,κ can be chosen
such that Con(Mν,κ) is isomorphic to the well–ordered set {λ : 1 ≤ λ ≤ τ}.

On the other hand, for every limit ordinal σ with |σ| = κ ≤ ν, there
exists a lattice Mν,κ without lattice bounds having |Mν,κ| = |Filt(Mν,κ)| = ν,
|Id(Mν,κ)| = 2ν and Con(Mν,κ) isomorphic to the well–ordered set {λ : 1 ≤
λ ≤ σ}, in particular having |Con(Mν,κ)| = κ.

Remark 10 Let ν be an infinite cardinal number. For every cardinal num-
ber κ with 2 ≤ κ ≤ ν or κ = 2ν, with the notations from Theorem 1, we
let Lν,κ = Mν,κ ⊕ Md

ν,κ. Then Lν,κ is a pseudo–Kleene algebra and, by
Theorem 1, Lν,2ν can be chosen to be a Kleene lattice.

We have |Filt(Lν,κ)| = |Id(Lν,κ)| = |Filt(Mν,κ)| + |Id(Mν,κ)| − 1 =
ν + 2ν − 1 = 2ν .

Con(Lν,κ) ∼= Con(Mν,κ)2 and ConI(Lν,κ) ∼= Con(Mν,κ), thus |Con(Lν,κ)|
= κ2 and |ConI(Lν,κ)| = κ, in particular Con(Lν,κ) ∼= ConI(Lν,κ)2 and, if κ
is infinite, then |Con(Lν,κ)| = |ConI(Lν,κ)|.

Under the Generalized Continuum Hypothesis, the cardinal numbers κ
above take each value between 2 and the cardinality 2ν of the sets of the
subsets of the lattices Lν,κ.

Also, by the previous remark, for each such cardinal κ and every suc-
cessor ordinal τ with |τ | = κ, Mν,κ can be chosen such that ConI(Lν,κ) ∼=
Con(Mν,κ) ∼= {λ : 1 ≤ λ ≤ τ}.

Now we revisit the technique from the proof in [4] of Theorem 1; we
apply the construction from [4, Section 3] to an arbitrary lattice L and we
also consider the case when L is an involution lattice. We will apply Lemma 3
in a slightly different manner than in [4, Section 3], so that, in statement
(v) of the following proposition, we do not need to confine ourselves to the
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cases when L satisfies the DCC or the ACC or has as many filters or ideals
as subsets; instead, this statement holds for any lattice L and does not
necessitate enforcing the Continuum Hypothesis.

Remark 11 Of course, if a lattice L has all filters principal, then |Filt(L)| =
|L|, and the same goes for ideals, but the converses do not hold; for instance,
if ν is an infinite cardinal number and we let L = M2ν ⊕ Cν2 , then, since
the Boolean algebra Cν2 has as many filters and as many ideals and subsets,
while the modular lattice M2ν has finite length and thus all filters and
ideals principal, we have |Filt(L)| = |Id(L)| = |Filt(M2ν )|+ |Filt(Cν2 )| − 1 =
|Id(M2ν )|+ |Id(Cν2 )| − 1 = 2ν + 2ν − 1 = 2ν = |L|, and L has nonprincipal
filters, namely the nonprincipal filters of Cν2 , and nonprincipal ideals, namely
the unions of M2ν with nonprincipal ideals of Cν2 ; see in [13] more examples
of lattices with as many filters and ideals as elements, but having nonprincipal
filters and nonprincipal ideals, thus failing both the DCC and the ACC.

Now let us apply the construction above to an algebra A2 = L that
can be a lattice or an i–lattice. So let L be an (involution) lattice and κ
be a cardinal number with 2 ≤ κ; let σ be an ordinal with |σ| = κ and

τ =

{
σ, if κ is finite,

σ + 1, if κ is infinite
, so that τ is a successor ordinal with σ ≤ τ

and |τ | = κ; and let I = {µ : 2 ≤ µ ≤ τ}.
We define inductively a family (Lµ)µ∈I of (involution) lattices, in the

following way: L2 = L and, for every ι ∈ I \ {2} = {µ : 3 ≤ µ ≤ τ}:

• if ι is a successor ordinal, ι = µ + 1 for a µ ∈ I, then we define
Lι = B(Lµ) � C22 , as a horizontal sum of bounded (involution) lattices;

• if ι is a limit ordinal, then we define the (involution) lattice Lι to be
the directed union of the family of (involution) lattices (Lµ)2≤µ<ι.

In the next remarks and proposition, we keep the notations above, namely
the cardinal number κ ≥ 2, the ordinal σ having the cardinality κ, the
successor ordinal τ ≥ σ also having the cardinality κ, the index set I of
the ordinals between 2 and τ , endowed with the canonical good order, the
(involution) lattice L and the family (Lµ)µ∈I of (involution) lattices defined
as above. We will always consider the canonical order on any set of ordinals.

Remark 12 Note that, in the subfamily (Lµ)µ∈I\{2} of (involution) lattices,
the bounded members Lµ are exactly those indexed by successor ordinals µ.
In particular, Lτ is a bounded (involution) lattice.
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Remark 13 For the case of bounded involution lattices in the following
proposition, we can also define, for every µ ∈ I such that ι = µ+ 1 ∈ I, the
bi–lattice Lι to be the horizontal sum of bi–lattices C3 � B(Lµ) � C3, and the
statements in the proposition still hold.

However, if we let the involution of Lι to be defined as in the horizontal
sum of the bi–lattice B(Lµ) with the four–element Boolean algebra, and L
satisfies condition k○ (so that L is a pseudo–Kleene algebra in the particular
case when L is bounded), then it is easy to see that each member of the
family (Lµ)µ∈I satisfies k○, and thus Lι is a pseudo–Kleene algebra for every
successor ordinal ι ∈ I \ {2}, in particular Lτ is a pseudo–Kleene algebra.

Proposition 2 With the notations above:

(i) the family (Lµ)µ∈I satisfies condition s○ and, if L ∈ I, so that
(Lµ)µ∈I ⊂ I, then also condition s○I;

(ii) if L is a nontrivial simple lattice, then the family (Lµ)µ∈I satisfies
condition c○, so, for all µ ∈ I, Con(Lµ) is isomorphic to the well–
ordered set {λ : 1 ≤ λ ≤ µ} and thus |Con(Lµ)| = |µ|, in particular
Con(Lσ) and Con(Lτ ) are isomorphic to the well–ordered sets {λ :
1 ≤ λ ≤ σ} and {λ : 1 ≤ λ ≤ τ}, respectively, and thus |Con(Lσ)| =
|Con(Lτ )| = κ;

(iii) if L is a nontrivial simple i–lattice, then the family (Lµ)µ∈I satisfies
condition c○I, so, for all µ ∈ I, ConI(Lµ) is isomorphic to the well–
ordered set {λ : 1 ≤ λ ≤ µ} and thus |ConI(Lµ)| = |µ|, in particular
ConI(Lσ) and ConI(Lτ ) are isomorphic to the well–ordered sets {λ :
1 ≤ λ ≤ σ} and {λ : 1 ≤ λ ≤ τ}, respectively, and thus |ConI(Lσ)| =
|ConI(Lτ )| = κ;

(iv) if L is a nontrivial i–lattice with a simple lattice reduct, then the
family (Lµ)µ∈I satisfies conditions c○ and c○I, so, for all µ ∈ I,
ConI(Lµ) = Con(Lµ) ∼= {λ : 1 ≤ λ ≤ µ} and thus |ConI(Lµ)| =
|Con(Lµ)| = |µ|, in particular ConI(Lσ) = Con(Lσ) ∼= {λ : 1 ≤ λ ≤ σ},
ConI(Lτ ) = Con(Lτ ) ∼= {λ : 1 ≤ λ ≤ τ} and thus |ConI(Lσ)| =
|Con(Lσ)| = |ConI(Lτ )| = |Con(Lτ )| = κ;

(v) if L is an infinite lattice and |L| = ν ≥ κ, then, for all µ ∈ I,
|Lµ| = ν, |Filt(Lµ)| = |Filt(L)| and |Id(Lµ)| = |Id(L)|, in particular
|Lσ| = |Lτ | = ν, |Filt(Lσ)| = |Filt(Lτ )| = |Filt(L)| and |Id(Lσ)| =
|Id(Lτ )| = |Id(L)|.
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Proof: (i) The singleton family {L2} = {L} trivially satisfies condition s○,
respectively s○I. For every ι ∈ I \{1}, if ι is a successor ordinal, ι = µ+1 for
some µ ∈ I, then, by the definition of Lι, we have Lµ ∈ S(Lι), respectively
Lµ ∈ SI(Lι), while, if ι is a limit ordinal, then, again by the definition of Lι,
we have Lλ ∈ S(Lι), respectively Lλ ∈ SI(Lι), for each 2 ≤ λ < ι. So
an immediate induction argument shows that the family (Lµ)µ∈I satisfies
condition s○, respectively s○I.

(ii),(iii) We apply induction. Assume that L2 = L is a simple lattice,
respectively a simple i–lattice, so that the singleton family {L2} = {L}
satisfies condition c○, respectively c○I. Now let ι ∈ I \ {2}, and let V be the
variety of lattices in the case of (ii), respectively V = I in the case of (iii).

If ι is a successor ordinal, ι = µ+ 1 for some µ ∈ I such that the family
(Lλ)2≤λ≤µ satisfies condition c○V, then Lι = B(Lµ) � C22 and ConV(Lµ) =
{∆Lµ} ∪ {eq({Lλ} ∪ {{x} : x ∈ Lµ \ Lλ}) : 2 ≤ λ ≤ µ}, therefore, by (i)
and the congruences of the construction Lι = B(Lµ) � C22 determined in
Remark 6, ConV(Lι) = {∇Lι} ∪ {eq(Lµ/θ ∪ {{x} : x ∈ C22 = Lι \ Lµ}) : θ ∈
ConV(Lµ)} = {∆Lι ,∇Lι} ∪ {eq({Lλ} ∪ {{x} : x ∈ Lι \ Lλ}) : 2 ≤ λ ≤ µ},
hence the family (Lλ)2≤λ≤ι also satisfies condition c○V.

If ι is a limit ordinal such that the family (Lλ)2≤λ<ι satisfies condi-
tion c○V, then, by (i) and Lemma 1, the family (Lλ)2≤λ≤ι also satisfies
condition c○V.

By the transfinite induction principle, it follows that the family
(Lµ)2≤µ≤τ satisfies condition c○V. By (i) and Lemma 2, (i), it follows
that, for all ordinals µ with 2 ≤ µ ≤ τ , ConV(Lµ) is isomorphic to the
well–ordered set {λ : 1 ≤ λ ≤ µ}, so |ConV(Lµ)| = |µ|.
(iv) By (ii) and (iii), along with the description of the congruences in
conditions c○ and c○I and the obvious fact that, if the lattice reduct of the
i–lattice L is simple, then so is the i–lattice L.

(v) By Lemma 2, (ii), we have |Lµ| = ν for all µ ∈ I. The property of the
numbers of filters and ideals is trivial for L2 = L.

Now let ι ∈ I \ {2}. Let us consider the ideal J = (L]Lι = (1L3 ]Lι \
{1L3} = (0L3 ]Lι ∪ L = {0Lλ+1 : 2 ≤ λ < τ} ∪ L since the chain (0L3 ]Lι is
formed of the elements 0Lµ with µ a successor ordinal in I if L2 = L is
bounded and in I \ {2} otherwise. J is a principal ideal of Lι iff L has a
top element. Since the set {µ : 2 ≤ µ ≤ ι} is well ordered and thus so is the
filter [1L3)Lι = {1Lλ+1 : 2 ≤ λ < ι}, it is easy to notice that Lι satisfies the
property g○J , so, by Lemma 3, every nonprincipal filter of Lι is generated
by a filter of J .
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Let F be a nonprincipal filter of Lι. Then there exists a filter G of
J = (0L3 ]Lι ∪ L such that F = [G)Lι .

If G ⊆ L, so that G is a filter of L, then F = [G)Lι = G ∪ [1L3)Lι ,
hence G is nonprincipal since F is nonprincipal.

If G * L, then G ∩ (J \ L) = G ∩ (0L3 ]Lι is nonempty, hence H =
G ∩ (0L3 ]Lι is a filter of (0L3 ]Lι and clearly, if we denote by aLµ , bLµ the
two incomparable elements of the copy of C22 from Lµ = B(Lλ) � C22 for
each successor ordinal µ = λ + 1 with λ ∈ I \ {τ}, then F = [G)Lι =

[H)Lι = H ∪
⋃

µ∈I,0Lµ∈H

[0Lµ , 1Lµ ]Lι ∪L∪ [1L3)Lι = H ∪{0Lµ , aLµ , bLµ : µ ∈ I,

0Lµ ∈ H} ∪ L ∪ [1L3)Lι , and thus H is nonprincipal since F is nonprincipal.
(0L3 ]Lι = {λ + 1 : 2 ≤ λ < ι} is dually well ordered, hence it has all
ideals principal and thus, since it is a chain, |Filt((0L3 ]Lι)| = |Id((0L3 ]Lι)| =
|(0L3 ]Lι | ≤ |ι| ≤ |τ | = κ ≤ ν.

By the above, clearly, G (thus also G∩ (0L3 ]Lι in the second case above)
is uniquely determined by F , and hence |Filt(Lι)| = |PFilt(Lι)|+ |Filt(Lι) \
PFilt(Lι)| = |Lι| + |Filt(J) \ PFilt(J)| = ν + |Filt(J) \ PFilt(J)| = |L| +
|Filt(L) \PFilt(L)|+ |Filt((0L3 ]Lι) \PFilt((0L3 ]Lι)| = |PFilt(L)|+ |Filt(L) \
PFilt(L)| + |Filt((0L3 ]Lι) \ PFilt((0L3 ]Lι)| = |Filt(L)| + |Filt((0L3 ]Lι) \
PFilt((0L3 ]Lι)| = |Filt(L)| since |Filt(L)| ≥ |PFilt(L)| = |L| = ν ≥
|Filt((0L3 ]Lι)| ≥ |Filt((0L3 ]Lι) \ PFilt((0L3 ]Lι)|.

By duality, it follows that |Id(Lι)| = |Id(L)|. 2

Corollary 1 For any infinite simple (involution) lattice L, every cardinal
number κ with 2 ≤ κ ≤ |L| and every ordinal ι with |ι| = κ, there exists
an (involution) lattice M with |M | = |L|, |Filt(M)| = |Filt(L)|, |Id(M)| =
|Id(L)| and:

(i) if L is a simple lattice, then Con(M) is isomorphic to the well–ordered
set {λ : 1 ≤ λ ≤ ι}, in particular |Con(M)| = κ;

(ii) if L is a simple i–lattice, then ConI(M) is isomorphic to the well–
ordered set {λ : 1 ≤ λ ≤ ι}, in particular |ConI(M)| = κ;

(iii) if L is an i–lattice with a simple lattice reduct, then ConI(M) =
Con(M) ∼= {λ : 1 ≤ λ ≤ ι}, in particular |ConI(M)| = |Con(M)| = κ;

(iv) if ι is a successor ordinal, then M is a bounded (involution) lattice;
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(v) if L is an i–lattice and satisfies condition k○, then the i–lattice M sat-
isfies condition k○, thus M is a pseudo–Kleene algebra if, additionally,
ι is a successor ordinal.

Proof: We apply to L the construction above, with L2 = L and ι = σ, and
take M = Lι. Then we apply Proposition 2 to obtain (i), (ii) and (iii), then
take ι = τ to also get (iv). Finally, we apply Remark 13 to obtain (v). 2

Obviously, we can obtain congruence lattices with different shapes
without changing these cardinalities, at least in the infinite case. For instance,
given any i–lattice M , we have ConI(C2×M) ∼= ConI(B(M)) ∼= C2×ConI(M),
while Con(C2 ×M) ∼= C2 × Con(M) and Con(B(M)) ∼= C22 × Con(M).

Recall that the pseudo–Kleene algebras Lν,κ from Remark 10 have
Con(Lν,κ) ∼= ConI(Lν,κ)2, so that |Con(Lν,κ)| = κ2. Now let us obtain such
pseudo–Kleene algebras with κ many (involution–preserving) congruences,
and, moreover, with their congruences coinciding to those of their lattice
reducts:

Theorem 2 For any infinite cardinal number ν, any cardinal number κ
with 2 ≤ κ ≤ ν or κ = 2ν and each µ ∈ {ν, 2ν}:

• there exists a bounded lattice Lν,µ,κ with |Filt(Lν,µ,κ)| = |Id(Lν,µ,κ)| = µ
and |Con(Lν,µ,κ)| = κ;

• if κ ≤ ν, then, for any well–ordered set (S,≤) with largest element
1S having |S| = κ, there exists a lattice Lν,µ,κ with |Filt(Lν,µ,κ)| =
|Id(Lν,µ,κ)| = µ and such that the lattice Con(Lν,µ,κ) isomorphic to
(S,≤); moreover, if the largest element 1S of (S,≤) has a predecessor
(that is, if 1S is strictly join–irreducible in the bounded chain (S,≤)),
then Lν,µ,κ can be chosen to be a bounded lattice;

• there exists a bounded involution lattice Lν,µ,κ with |Filt(Lν,µ,κ)| =
|Id(Lν,µ,κ)| = µ and |ConI(Lν,µ,κ)| = |Con(Lν,µ,κ)| = κ; moreover,
Lν,µ,κ can be chosen to be a pseudo–Kleene algebra and, if κ = 2ν,
even a Kleene algebra, more precisely a Kleene chain;

• if κ ≤ ν, then, for any well–ordered set (S,≤) with largest ele-
ment 1S having |S| = κ, there exists an involution lattice Lν,µ,κ with
|Filt(Lν,µ,κ)| = |Id(Lν,µ,κ)| = µ and such that ConI(Lν,µ,κ) =
Con(Lν,µ,κ) ∼= (S,≤) and, furthermore, Lν,µ,κ can be chosen such
that it satisfies condition k○; moreover, if the largest element 1S of
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(S,≤) has a predecessor (that is, if 1S is strictly join–irreducible in
the bounded chain (S,≤)), then Lν,µ,κ can be chosen to be a bounded
involution lattice, thus even a pseudo–Kleene algebra.

Proof: Let T be a set with |T | = ν and let us consider the orthomodular
lattice and thus pseudo–Kleene algebra Lν,ν,2 = Mν = Mν+ν = �t∈TC22 ,
which has length 3 and a simple lattice reduct, thus all filters and ideals
principal and |ConI(Lν,ν,2)| = |Con(Lν,ν,2)| = 2. By Corollary 1, for every
cardinal number 3 ≤ κ ≤ ν and every ordinal ι having |ι| = κ, there exists an
involution lattice Lν,ν,κ that satisfies k○ and has |Filt(Lν,ν,κ)| = |Id(Lν,ν,κ)| =
|Filt(Lν,ν,2)| = |Id(Lν,ν,2)| = ν and ConI(Lν,ν,κ) = Con(Lν,ν,κ) ∼= {λ : 1 ≤
λ ≤ ι}, so that |ConI(Lν,ν,κ)| = |Con(Lν,ν,κ)| = κ. Additionally, if ι is a
successor ordinal, then Lν,ν,κ is bounded, thus it is a pseudo–Kleene algebra.

Now let C be a well–ordered set with top element having |C| = ν, as in
Example 1, so that the Kleene chain Lν,ν,2ν = C ⊕ Cd has |ConI(Lν,ν,2ν )| =
|Con(C)| = 2ν and |Filt(Lν,ν,2ν )| = |Id(Lν,ν,2ν )| = ν.

Now we consider the pseudo–Kleene algebras Lν,2ν ,2ν = Mν,2ν ⊕Md
ν,2ν

and Lν,2ν ,2 = (Mν,2ν ⊕Md
ν,2ν )� C22 , where Mν,2ν is the bounded lattice M of

cardinality ν from Example 2. Since |Mν,2ν | = ν, we have |Lν,2ν ,2ν | =
|Lν,2ν ,2| = ν. Since |Filt(Mν,2ν )| = ν and |Id(Mν,2ν )| = 2ν , we have
|Filt(Lν,2ν ,2ν )| = |Id(Lν,2ν ,2ν )| = |Filt(Lν,2ν ,2)| = |Id(Lν,2ν ,2)| = 2ν . Fi-
nally, |ConI(Lν,2ν ,2ν )| = |Con(Mν,2ν )| = 2ν = 2ν · 2ν = |Con(Lν,2ν ,2ν )| and,
since Mν,2ν is 0–regular, so that Con01(Mν,2ν ⊕Md

ν,2ν ) = {∆Mν,2ν⊕Md
ν,2ν
},

we have ConI(Lν,2ν ,2) = Con(Lν,2ν ,2) = {∆Lν,2ν ,2 ,∇Lν,2ν ,2}.
By Corollary 1, it follows that, for every cardinal number 2 ≤ κ ≤ ν

and any ordinal ι with |ι| = κ, there exists an involution lattice Lν,2ν ,κ
that satisfies k○ and has |Filt(Lν,2ν ,κ)| = |Id(Lν,2ν ,κ)| = |Filt(Lν,2ν ,2)| =
|Id(Lν,2ν ,2)| = 2ν and ConI(Lν,2ν ,κ) = Con(Lν,2ν ,κ) ∼= {λ : 1 ≤ λ ≤ ι}, so
that |ConI(Lν,2ν ,κ)| = |Con(Lν,2ν ,κ)| = κ. Additionally, if ι is a successor
ordinal, then Lν,2ν ,κ is bounded, thus it is a pseudo–Kleene algebra. 2

Corollary 2 For any infinite cardinal number ν, any cardinal number κ
with 2 ≤ κ ≤ ν or κ = 2ν and each µ ∈ {ν, 2ν}, there exists an antiortho-
lattice Aν,µ,κ with |Filt(Aν,µ,κ)| = |Id(Aν,µ,κ)| = µ and |ConBZL(Aν,µ,κ)| = κ.
Furthermore, if 3 ≤ κ ≤ ν, then, for every successor ordinal τ with |τ | = κ
and whose predecessor is also a successor ordinal, we may choose Aν,µ,κ
such that ConBZL(Aν,µ,κ) = Con01(Aν,µ,κ) ∪ {∇Aν,µ,κ} ∼= {λ : 1 ≤ λ ≤ τ};
otherwise written: if 3 ≤ κ ≤ ν, then, for any well–ordered set (S,≤) of
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cardinality κ and having a largest element that has a predecessor p such
that p has a predecessor in (S,≤), as well, we may choose Aν,µ,κ such that
ConBZL(Aν,µ,κ) = Con01(Aν,µ,κ) ∪ {∇Aν,µ,κ} ∼= (S,≤).

Proof: Let us consider the 0–regular bounded lattice with ν elements and
as many ideals as subsets Mν,2ν from the proof of Theorem 2, which equals
M from Example 2. Then the antiortholattice Aν,2ν ,2 = Mν,2ν ⊕Md

ν,2ν has
|Aν,2ν ,2| = ν, |Filt(Aν,2ν ,2)| = |Id(Aν,2ν ,2)| = 2ν and |ConBZL(Aν,2ν ,2)| = 2.

Now we consider the modular lattice Mν with ν elements and length 3,
which is simple, thus 0–regular, and has all filters and ideals principal
since it has finite length, and we let Aν,ν,2 = Mν ⊕Md

ν . Then the an-
tiortholattice Aν,ν,2 has |Aν,ν,2| = ν, |Filt(Aν,ν,2)| = |Id(Aν,ν,2)| = ν and
|ConBZL(Aν,ν,2)| = 2.

Now let κ be a cardinal number with 3 ≤ κ ≤ ν or κ = 2ν , let
µ ∈ {ν, 2ν}, and consider the antiortholattice Aν,µ,κ = C2 ⊕ Lν,µ,κ−1 ⊕ C2,
where Lν,µ,κ−1 is a pseudo–Kleene algebra as in Theorem 2, that is with
ν elements, µ filters and ideals and κ − 1 congruences. Then |Aν,µ,κ| = ν,
|Filt(Aν,µ,κ)| = |Id(Aν,µ,κ)| = µ and |ConBZL(Aν,µ,κ)| = |ConBI01(Aν,µ,κ)|+
1 = |ConI(Lν,µ,κ−1)|+ 1 = κ− 1 + 1 = κ.

Additionally, if κ ≤ ν and thus 2 ≤ κ − 1 ≤ ν, then, according to
Theorem 2, for every successor ordinal σ with |σ| = κ− 1, Lν,µ,κ−1 can be
chosen such that all its lattice congruences preserve its involution and its
congruence lattice is isomorphic to {λ : 1 ≤ λ ≤ σ}. Now, if we let τ = σ+ 1,
so that |τ | = κ, then it follows that ConBZL(Aν,µ,κ) = ConBI0(Aν,µ,κ) ∪
{∇Aν,µ,κ} = {eq(Lν,µ,κ−1/β∪{{0}, {1}}) : β ∈ ConI(Lν,µ,κ−1)}∪{∇Aν,µ,κ} =
{eq(Lν,µ,κ−1/β ∪ {{0}, {1}}) : β ∈ Con(Lν,µ,κ−1)} ∪ {∇Aν,µ,κ} =
Con01(Aν,µ,κ) ∪ {∇Aν,µ,κ} ∼= {λ : 1 ≤ λ ≤ σ} ⊕ C2 ∼= {λ : 1 ≤ λ ≤ σ + 1} =
{λ : 1 ≤ λ ≤ τ}. 2

Corollary 3 Under the Generalized Continuum Hypothesis:

• an infinite (bounded) lattice with any numbers of filters and ideals can
have any number of congruences between 2 and its number of subsets;

• a (bounded) involution lattice and even a pseudo–Kleene algebra with
any number of ideals can have any number of congruences between 2
and its number of subsets and, simultaneously, when it has strictly less
congruences than subsets, its congruences coinciding to those of its
lattice reduct;
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• an antiortholattice with any number of ideals can have any number of
congruences between 2 and its number of subsets and, simultaneously,
when it has strictly less congruences than subsets, its proper congruences
coinciding to the congruences of its lattice reduct that have singleton
classes of its lattice bounds.

Under the Continuum Hypothesis, the above hold for countable (bounded)
lattices, countable (bounded) involution lattices and even pseudo–Kleene
algebras, respectively countable antiortholattices.
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[14] C. Mureşan. Cancelling Congruences of Lattices, While Keeping Their
Numbers of Filters and Ideals. South American Journal of Logic, 2020.
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