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Abstract

In many practical applications the underlying graph must be as
equitable colored as possible. A coloring is called equitable if the number
of vertices colored with each color differs by at most one, and the least
number of colors for which a graph has such a coloring is called its
equitable chromatic number.

We introduce a new integer linear programming approach for study-
ing the equitable coloring number of a graph and show how to use it
for improving lower bounds for this number. The two stage method is
based on finding or upper bounding the maximum cardinality of an
equitable color class in a valid equitable coloring and, then, sequentially
improving the lower bound for the equitable coloring number.

The computational experiments were carried out on DIMACS
graphs and other graphs from the literature.
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1 Introduction

In graph theory there exists a wide range of optimization problems with
pertinent practical importance, and one of the most studied is the Graph
Coloring Problem (GCP); this problem arises in many applications such
as scheduling, timetabling, electronic bandwidth allocation and sequencing
problems (see [1] for a survey).

Given G = (V,E) a graph, where V is the set of vertices and E is the
set of edges, a p-coloring of (the vertices of) G is a map c : V → {1, 2, . . . , p}
such that any two adjacent vertices have different colors. Vertices with the
same color make together a color class: c−1(i), for 1 ≤ i ≤ p; some of these
color classes could be empty but all of them are stable sets of G. The graph
coloring problem for G consists of finding the minimum number p such that G
has a p-coloring. This minimum number of colors is called the chromatic
number of the graph G and is denoted by χ(G).

One of the usual applications of this problem is to model the simple
scheduling problem: assign a given set of tasks to workers, knowing that
some pairs of tasks cannot be assigned to the same worker. We can model
this assignment problem by building a graph whose vertices are the tasks
and whose edges are the conflicting pairs of tasks. A coloring of the resulted
graph will be a feasible assignment of all tasks while the chromatic number
will be the minimum number of needed workers.

By imposing additional restrictions one may get variations of the graph
coloring problem. For instance, in the above scheduling problem, it may be
required to ensure a certain kind of load balancing of workload. This can
be viewed as an equity constraint and by imposing it we get the equitable
coloring problem.

An equitable p-coloring of G is p-coloring such that difference on the
cardinalities of any two non-empty color classes is at most one. Each subset
is associated with a color and called a color set. The Equitable Coloring
Problem (ECP) consists of finding the minimum value p such that there is
an equitable p-coloring of G. This value is said to be the equitable chromatic
number of G and is denoted by χ=(G) or χeq(G).

The equitable coloring problem was introduced by Meyer in [2] moti-
vated by some scheduling problems; other applications of this problem are
partitioning and load balancing in multiprocessor machines [3], scheduling [4],
probability theory, municipal garbage collection [5]. A review of some basic
results on ECP are provided in [6, 7].

Computing the equitable chromatic number was proved to be NP-hard
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(see [8]) and the number of graph families for which ECP is known to
be easy to solve is small (the trees, the complete n-partite graphs, the
wheel graphs, the graphs with bounded treewidth etc). Several exact and
heuristic approaches are known in the literature for solving the ECP for
arbitrary graphs: tabu-search heuristics ([9, 10]), linear programming based
algorithms ([11, 12]), degree of saturation based heuristic ([13]), greedy-based
constructive heuristics ([6]) etc.

In this paper we introduce a new method for finding lower bounds for
the equitable chromatic number. Our approach starts by finding an upper
bound of the maximum cardinality of an equitable color class and, then,
improves the lower bound on the equitable chromatic number by verifying
one by one the consecutive possible values.

In order to do this we need two integer linear programming models: one
for finding upper bounds of the maximum cardinality of an equitable color
class and one for deciding if for a given p, the graph admits an equitable p-
coloring. Both these models are based on integer linear programming models
for the classic coloring problem using partial-ordering and assignment models.

The remaining of the paper is organized as follows: in Section 2 we
discuss our setting and the related work, in Section 3 we describe and explain
the LP models, Section 4 contains the numerical results, and the last section
is dedicated to conclusions.

2 Background

Let G = (V,E) be an undirected graph with n vertices. While a graph
admitting a p-coloring admits also a (p+ 1)-coloring, this is not necessarily
true for equitable colorings. Other differences between the two numbers, χ
and χeq: the equitable chromatic number of a subgraph is not necessarily
smaller than the equitable chromatic number of the main graph, and the
equitable chromatic numbers of connected components are not related with
the equitable chromatic number of the graph itself.

A common property of the two numbers is the following χ(G), χeq(G)
are both at most ∆(G)+1 - the second inequality was obtained by Hajnal and
Szemeredi: ([14, 15]), while the first is due to the greedy coloring algorithm.
A simple observation shows that if G admits an equitable p-coloring whose
non-empty color classes are S1, S2, . . . Sp, then |Si| ∈ {bn/pc, dn/pe}, i = 1, p.

There are three main linear programming approaches to graph coloring
problem resolution: the assignment model, the representatives model, and
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the set covering model. The straightforward way of modeling the equitable
coloring problem is the assignment model that uses two types of variables: xvi,
with v ∈ V and i ∈ {1, 2, . . . , n}, xvi = 1 if and only if vertex v receives the
color i, and wi with i ∈ {1, 2, . . . , n}, where wi = 1 if and only if color i
is used.

min

n∑
i=1

wi

n∑
i=1

xvi = 1,∀v ∈ V, (1)

xui + xvi ≤ wi, ∀uv ∈ E, i = 1, n (2)

xvi ∈ {0, 1} ∀v ∈ V, i = 1, k, wi ∈ {0, 1} i = 1, n

To this classical model some other constraints can be added in order to
remove symmetric solutions (see [16]); for obtaining p-equitable colorings we
add the following constraints (see [12]):

n∑
i=1

xvi ≥
n∑

j=i

⌊
n

p

⌋
(wj − wj+1), i = 1, n− 1, (3)

n∑
i=1

xvi ≤
n∑

j=i

⌈
n

p

⌉
(wj − wj+1), i = 1, n− 1, (4)

xui ≤ wi,∀u isolated, i = 1, n (5)

In the representatives model (see [17]) each color class is represented by
exactly one vertex. The binary variables are: xuv, with u, v ∈ V such that
uv /∈ E (including here the case u = v); for u 6= v, xuv = 1 if and only if v is
represented by u, while for u = v, xvv = 1 if and only if v is representative
for its color class.

min

∑
v∈V

xvv∑
u:uv/∈E

xuv ≥ 1, ∀v ∈ V, (6)

xuv + xvw ≤ xvv, ∀v ∈ V,∀u,w ∈ V \ {v} s. t. uv, vw /∈ E, (7)

xuv ∈ {0, 1} ∀uv /∈ E

Some other constraints must be added for obtaining an equitable coloring of
minimum number of colors. The difference from the above model is that by
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solving this modified model (see [11]) we get the equitable chromatic number
– χeq(G).

The set covering based model [18] aims to cover all vertices with the
minimum number of stable (vertex independent) sets.

min

∑
S∈S

xS∑
S∈S:v∈S

xS ≥ 1,∀v ∈ V, (8)

xS ∈ {0, 1} ∀S ∈ S

S is the family of all stable sets for the graph coloring problem, but in order
to get a p-equitable coloring we must change this family to S ′:

|S| ≤
⌈
n

p

⌉
, ∀S ∈ S ′, (9)

|S| ≥
⌊
n

p

⌋
, ∀S ∈ S ′, (10)

For finding a p-equitable coloring (if any) the above model must be solved
by the column generation method combined with other approaches (e. g.
branch-and-bound giving a branch-and-price algorithm).

For our approach we will investigate only the assignment and the
partial-ordering based models.

3 LP Partial-Ordering and
Assignment Based Models

3.1 LP Partial-Ordering Model

In the partial-ordering based integer linear programming model for graph
coloring problem (see [17]) the colors are linearly ordered and they are not
directly assigned to vertices, but we determine a relative order of each vertex
with respect to each color. If v is a vertex and i is a color, a solution to this
model establishes that if v is neither greater nor lower than i, then v will
receive the color i.

The (binary) variables of the model are: yi,v and zv,i with i ∈ {1, 2, . . . , k}
and v ∈ V , where k is an upper bound for the chromatic number; yi,v = 1 if
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and only if v is greater than i, while zv,i = 1 if and only if v is less than i

min 1 +

(
k∑

i=1

yi,q

)
zv,1 = 0,∀v ∈ V, (11)

yk,v = 0,∀v ∈ V, (12)

yi,v − yi+1,v ≥ 0,∀v ∈ V, i = 1, k − 1, (13)

yi,v + zv,i+1 = 1, ∀v ∈ V, i = 1, k − 1, (14)

yi,u + zu,i + yi,v + zv,i ≥ 1, ∀uv ∈ E, i = 1, k, (15)

yi,q − yi,v ≥ 0, ∀v ∈ V, i = 1, k − 1, (16)

yi,v, zv,i ∈ {0, 1},∀v ∈ V, i = 1, k, (17)

The vertex q will be assigned to the largest chosen color.

3.2 The Partial-Ordering Model
Adapted for Equitable Coloring

In order to introduce the specific constraints for color classes cardinality we
use the following result.

Lemma 1 The color i (≥ 2) class has cardinality

(∑
v∈V

yi−1,v −
∑
v∈V

yi,v

)
,

while the color 1 class cardinality is

(
n−

∑
v∈V

y1,v

)
.

Proof: Each vector y·,v ∈ {0, 1}k has its elements in increasing order:

y·,v
T = (1, 1, . . . , 1, 0

i

, . . . , 0)

Vertex v receives the color i if and only if the first zero value occurs in
position i; this property allows us to compute the cardinalities of the color

classes. The number of vertices having color at least i (≥ 2) is
∑
v∈V

yi,v, while

the number of vertices having color at least 1 is n. 2
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Based on this lemma one can model the problem of deciding if a graph
admits an equitable p-coloring:

(M1P ) min 1

zv,1 = 0,∀v ∈ V, (18)

yk,v = 0,∀v ∈ V, (19)

yi,v − yi+1,v ≥ 0,∀v ∈ V, i = 1, p− 1, (20)

yi,v + zv,i+1 = 1, ∀v ∈ V, i = 1, p− 1, (21)

yi,u + zu,i + yi,v + zv,i ≥ 1, ∀uv ∈ E, i = 1, p, (22)∑
v∈V

yi−1,v −
∑
v∈V

yi,v −
⌈
n

p

⌉
vi −

⌊
n

p

⌋
wi = 0,∀i = 2, p, (23)

∑
v∈V

y1,v +

⌈
n

p

⌉
v1 +

⌊
n

p

⌋
w1 = n, (24)

vi + wi = 1, ∀i = 1, p, (25)

vi, wi, yi,v, zv,i ∈ {0, 1}, ∀v ∈ V, i = 1, p,

Equations (23) – (25) constraining the cardinalities of the color classes can
be replaced by (we get rid in this way of the variables vi and wi, i = 1, p):∑

v∈V
yi−1,v −

∑
j∈V

yi,v ≤
⌈
n

p

⌉
, ∀i = 2, p, (23’)

∑
v∈V

yi−1,v −
∑
v∈V

yi,v ≥
⌊
n

p

⌋
, ∀i = 2, p, (23”)

n−
∑
v∈V

y1,v ≤
⌈
n

p

⌉
, (24’)

n−
∑
v∈V

y1,v ≥
⌊
n

p

⌋
, (24”)

One can observe that for these models there is no need of an objective
function, the only question is if the subjacent polyhedra are non-empty.

3.3 The Maximum Cardinality of an Equitable Color Class

The above models can be further modified for finding the maximum cardi-
nality of a color class in an equitable coloring; such a parameter cannot give
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the equitable chromatic number but can give lower bounds for it. In the
following we will suppose that k is an upper bound for χeq(G) and M is a
very large integer. The model is designed such that the maximum cardinality
corresponds to the color 1.

(M1) max

(
n−

∑
v∈V

y1,v

)
zv,1 = 0, ∀v ∈ V, (26)

yk,v = 0,∀v ∈ V, (27)

yi,v − yi+1,v ≥ 0,∀v ∈ V,∀i = 1, k − 1, (28)

yi,v + zv,i+1 = 1,∀v ∈ V,∀i = 1, k − 1, (29)

yi,u + zu,i + yi,v + zv,i ≥ 1,∀uv ∈ E,∀i = 1, k, (30)∑
v∈V

yi−1,v −
∑
v∈V

yi,v +
∑
v∈V

y1,v ≤ n, ∀i = 2, k, (31)∑
v∈V

yi−1,v −
∑
v∈V

yi,v +
∑
v∈V

y1,v +Mvi ≥ n− 1, ∀i = 2, k,

(32)∑
v∈V

yi−1,v −
∑
v∈V

yi,v +Mvi ≤M, ∀i = 2, k, (33)

vi, yi,v, zv,i ∈ {0, 1},∀v ∈ V,∀i = 1, k,

Let ui be the number of vertices having color i, constraints (31) prevent that
no other color class has its cardinality strictly greater than u1. Constraints
(32) – (33) ensure that the cardinality of any color class is at least (u1 − 1)
or 0 (empty color classes cannot be avoided in this model), this can be done
using the big M method:

ui ≤M(1− vi)
ui ≥ u1 − 1−Mvi

One may attempt to break the symmetry by requiring that the cardinalities
are in non-increasing order: u1 ≥ u2 ≥ . . . ≥ uk, but experiments show no
performance improvement by doing so. On the other hand the way in which
we choose the very large integer M has a strong influence on solving the
problem.

Lemma 2 We could choose M = dn/k0e, where k0 is a lower bound for
χeq(G).
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Proof: Suppose that the problem from above has a solution corresponding
to a equitable p-coloring of G. If vi is 0, then the first equation is satisfied
if M is an upper bound of ui which is at most u1 from (31), while if vi is 1,
then the second equation is satisfied if u1 ≤M + 1. Hence an appropriate
value for M would be an upper bound for u1 like dn/k0e, since

u1 ≤ dn/pe ≤ dn/χeq(G)e ≤ dn/k0e. 2

3.4 The Assignment Model Revisited

The assignment model can be modified for finding the maximum cardinality
of an equitable color class (see [12]).

(M2) max

(∑
v∈V

xv1

)
k∑

i=1

xvi = 1,∀v ∈ V, (34)

xui + xvi − wi ≤ 0,∀uv ∈ E,∀i = 1, k (35)

wi+1 − wi ≤ 0,∀i = 1, k − 1 (36)∑
v∈V

xvi −
∑
v∈V

xv1 ≤ 0, ∀i = 2, k, (37)∑
v∈V

xvi −
∑
v∈V

xv1 +Mvi ≥ −1, ∀i = 2, k, (38)∑
v∈V

xvi +Mvi ≤M, ∀i = 2, k, (39)

xvi ∈ {0, 1} ∀v ∈ V,∀i = 1, k, vi, wi ∈ {0, 1} ∀i = 1, k

Obviously, the same choice for M as above works here. For these reasons
the implementations of both model M1 and M2 need a lower and an upper
bound.

The corresponding model for deciding if the graph has an equitable
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k-coloring follows

(M2P ) min1
p∑

i=1

xvi = 1,∀v ∈ V, (40)

xui + xvi − wi ≤ 0,∀uv ∈ E,∀i = 1, p (41)

wi+1 − wi ≤ 0,∀i = 1, p− 1 (42)∑
v∈V

xvi ≤
⌈
n

p

⌉
, ∀i = 1, p, (43)

∑
v∈V

xvi ≥
⌊
n

p

⌋
, ∀i = 1, p, (44)

xvi ∈ {0, 1} ∀v ∈ V,∀i = 1, p, wi ∈ {0, 1} ∀i = 1, p

3.5 Lower Bound for Equitable Chromatic Number

The following result shows that one may improve the lower bound for the
equitable chromatic number by just providing upper bounds for the optimum
in the above ILP problems (M1 and M2).

Lemma 3 Let G = (V,E) be a graph and β0 be an integer upper bound for
the maximum cardinality of a color class in any equitable colorings of the

vertices of G. Then χeq(G) ≥
⌈
n

β0

⌉
.

Proof: Let k be the number of colors for an equitable coloring for which
the maximum cardinality of a color class is β, obviously⌈

n

β

⌉
≤ k ≤

⌈
n

β − 1

⌉
.

Consider now an optimum equitable coloring and the maximum cardinality
of one of its a color classes βeq. If βeq < β, then⌈

n

β0

⌉
≤
⌈
n

β

⌉
≤
⌈
n

βeq

⌉
≤ χeq(G) ≤

⌈
n

βeq − 1

⌉
.

2

The proof of the following consequence is obvious.
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Corollary 1 Suppose that β1 is the maximum cardinality of a color class
(i. e., a solution to the above ILP problem), then the maximum cardinality
of a color class in an optimum maximum cardinality of a color class, βeq,
belongs to the set {

β ∈ Z∗ :

⌈
n

β − 1

⌉
=

⌈
n

β1

⌉}
.

4 Numerical Experiments and Conclusions

In this section we present and analyze computational experiments all car-
ried on an Intel i5-7500 CPU 3.40 GHz with with 8 GB of memory on
Ubuntu 18.04.5 LTS and using a Gurobi Academic License (Benchmarks [19]
user time: r500.5=4.74 s). The benchmark instances (commonly used
in the literature for the classic graph coloring problem) are available at:
http://cedric.cnam.fr/~porumbed/graphs/ and https://mat.tepper.

cmu.edu/COLOR02/INSTANCES/

4.1 Method

Our models are used in the following way for improving (if possible) lower
bounds for the equitable chromatic number:

1. Use first one of the two models (M1) or (M2) for finding upper bounds
of the maximum cardinality of an equitable color class.

2. If the found lower bounds are better update them and then iteratively
try to improve them by employing model (M2) or (M2P ).

In the first step from above we need lower and upper bounds for the equitable
chromatic number; one can use ∆(G) + 1 as an upper bound ([14, 15]) and 3
as a lower bound - since the graphs are non-bipartite. In our experiments
we used the best known bounds from the literature ([10, 9]), except for
the queenk k graphs for which ∆(G) + 1 was used as upper bound. It
is interesting to note that it’s not necessarily to completely solve models
(M1) and (M2); using the Gurobi solver one can get an upper bound for
the objective and take its integer part as the desired upper bound of the
maximum cardinality of an equitable color class.

In the second step, starting with the (new discovered) lower bound we
verify if the graph has an equitable coloring with the corresponding number
of colors and increase this bound if the problem proves to be infeasible.

http://cedric.cnam.fr/~porumbed/graphs/
https://mat.tepper.cmu.edu/COLOR02/INSTANCES/
https://mat.tepper.cmu.edu/COLOR02/INSTANCES/
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This time we use the models (M2) and (M2P ); (M2) can be used in the
following way to verify if the given graph has an equitable p-coloring: take
M = dn/pe - see Lemma 3.5 - and k = p. Since the corresponding results for
(M1) and (M1P ) are much less encouraging we skipped them; our results
show that the partial ordering base models are weaker than the assignment
based models at least in terms of the continuous LP-relaxation.

Table 1: Numerical results for step 1.

Instance n m LB UB
M1 M2

β0 LB* time(s) β0 LB* time(s)

R125.1 125 209 3 5 25 5 2.91i 30 5 0.04i

R125.5 125 3838 3 36 5 25 2.52r 5 25 4.16r

R250.1 250 867 3 8 70 4 0.06r 36 7 0.47i

R250.5 250 14849 3 66 7 36 261b 7 36 512b

le450 5c 450 9803 3 5 93 5 8.94r 92 5 388.85r

le450 15c 450 16680 3 15 49 10 22.78r 31 15 222.77r

le450 25c 450 17343 3 26 49 10 91b 21 22 51.86r

le450 25d 450 17425 25 26 19 24 11.89r 18 25 31.29r

flat300 28 0 300 21695 11 34 29 11 71.35r 28 11 194.05r

flat300 20 0 300 21375 11 34 29 11 69.68r 28 11 140.71r

ash608GPIA 1216 7844 3 4 407 3 15.31r 406 3 30.71r

ash958GPIA 1916 12506 3 4 640 3 6.88r 639 3 84.54r

DSJC125.5 125 7782 9 17 15 9 1.12r 14 9 7.15r

DSJC125.9 125 13922 43 44 4 32 10.43r 3 42 1.82r

DSJC250.1 250 6436 4 8 64 4 1.32r 63 4 15.00r

DSJC250.5 250 31336 12 30 21 12 34.75r 21 12 23.63r

inithx.i.3 621 13969 3 37 208 3 8.60r 22 29 283b

inithx.i.2 645 13979 30 36 23 29 40.16r 22 30 20.50r

mulsol.i.2 188 3885 34 36 7 27 5.55i 6 32 10.56i

2-Insertions 5 597 3936 3 6 200 3 0.39r 199 3 3.78r

1-Insertions 6 607 6337 3 7 204 3 1.03r 203 3 4.27r

4-FullIns 4 690 6650 6 8 116 6 5.61r 115 6 4.20r

4-FullIns 5 4146 77305 6 9 692 6 55.65r 691 6 604.78r

wap02a 2464 111742 40 41 − − − 62 40 549.10r

wap05a 905 43081 3 50 − − − 46 19 211.53r

wap06a 947 43571 3 41 85 12 62.84r 31 31 160.85r

wap07a 1809 103368 3 43 − − − 58 32 1667.27r

wap08a 1870 104176 3 43 − − − 68 28 903.94r

queen12 12 144 5192 3 44 12 12 2.23r 12 12 6.06r

queen13 13 144 6656 13 48 13 13 5.16r 13 13 59.23r

queen14 14 196 8372 3 51 14 14 2.33r 14 14 7.36r

queen15 15 225 10360 3 56 15 15 4.75r 15 15 16.19r

queen16 16 256 12640 3 59 16 16 7.40r 17 16 24.03r

The computational results of the first step are reported in Table 1.
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Columns 1, 2, and 3 display the name of the instance, the number of vertices,
and the number of edges, correspondingly; columns 4 and 5 show the known
bounds for the equitable chromatic number. Columns 6-8 and 9-11 display
the upper bound for the maximum cardinality of an equitable color class
(called β0), the corresponding lower bound for χeq, and the time needed to
find this upper bound, or ”−” if the solver was not able to find it within
the 30 minutes time limit.

There are three ways of finding β0 using Gurobi solver: by finding an
optimal solution to the corresponding ILP (marked by an ”i”), by computing
the root relaxation objective (”r”), or by finding upper bounds of the ILP
objective function (”b”).

For the thirty-three evaluated instances we found seventeen new lower
bounds, in only two cases our results were not better, while for the remaining
instances the best known bounds were confirmed. The M2 model proved
to give better bounds but needs more time for almost all instances, while
the M1 model is faster but failed to deliver any bound in four cases.

Table 2 reports the numerical results achieved in the second step and
outlines both steps. Column 1 display the name of the instance, column 2
shows the new lower bound found after performing both steps (in parentheses
we have the older best known bounds) - if χeq was already found after the
first step, or if the second step failed to improve the first step, then here we
have the result from Table 1. Column 3-4 and 5-6 report the lower bound
obtained after performing the second step (if any) and the average time.

This step is a sequential procedure (for this reason we reported the
average time), e. g. for R250.5.col instance the known lower bound and
upper bound are 3 and 66, respectively, the first step enlarges the lower
bound to 36, in the second step we verify if the graph admits equitable
colorings with k = 36, 37, . . . - and it turned out that the corresponding ILP
problems are infeasible up to k = 56, hence χeq ≥ 57. When the solver finds
integer solutions to the ILP, or the lower bound χeq is found and reported.

Column 7 contains the remarks concerning the decisive (and final) step
and the finding of χeq. For twenty-four of the instances new lower bounds
were found (an increase from the first step) and for six of them χeq was
found (three are due only to the first step).

Model M2P is faster than M2, but both models gave same bounds -
or both failed to improve them; the same 30 minutes time limit - for each
iteration - was used in this step also.
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Table 2: Numerical results for steps 1 and 2.

Instance
new (old) M2 M2P

Remarks
LB LB* time(s) LB* time(s)

R125.1 5 (3) − − − − step 1, χeq = 5
R125.5 35 (3) 35 18.10 35 2.01 step 2
R250.1 8 (3) 8 0.07 8 0.03 step 2, χeq = 8
R250.5 57 (3) 57 36.62 57 31.39 step 2
le450 5c 5 (3) − − − − step 1, χeq = 5
le450 15c 15 (3) − − − − step 1, χeq = 15
le450 25c 25 (3) 25 61.22 25 16.60 step 2
le450 25d 25 (25) − − − − step 1
flat300 28 0 11 (11) − − − − step 1
flat300 20 0 11 (11) − − − − step 1
ash608GPIA 4 (3) 4 120.10 4 0.13 step 2, χeq = 4
ash958GPIA 4 (3) 4 322.02 4 0.22 step 2, χeq = 4
DSJC125.5 9 (9) − − − − step 1
DSJC125.9 42 (43) − − − − step 1
DSJC250.1 5 (4) 5 20.10 5 7.18 step 2
DSJC250.5 12 (12) − − − − step 1
inithx.i.3 31 (3) 31 32.34 31 21.08 step 2
inithx.i.2 31 (30) 31 28.51 31 14.38 step 2
mulsol.i.2 32 (34) − − − − step 1
2-Insertions 5 4 (3) 4 91.20 4 56.23 step 2
1-Insertions 6 4 (3) 4 42.74 4 6.05 step 2
4-FullIns 4 7 (6) 7 36.69 7 17.90 step 2
4-FullIns 5 6 (6) − − − − step 1
wap02a 40 (40) − − − − step 1
wap05a 46 (3) 46 33.84 46 26.45 step 2
wap06a 40 (3) 40 47, 64 40 33.33 step 2
wap07a 40 (3) 40 442, 90 40 341.74 step 2
wap08a 40 (3) 40 311.38 40 283.97 step 2
queenk k k (3) − − − − step 1

5 Conclusions

In this paper we introduce and analyze a two stage procedure for improving
the lower bound for the equitable chromatic number of a graph. This is
a new approach since usually the literature knows only procedures that
decreases the upper bound for this number.

Our approach is based on finding the maximum cardinality (or, at least
upper bound) of an equitable color class. Our method finds improved lower
bounds for 25 out of 33 investigated instances.

The first step of our method employs a new model - based on a partial
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ordering model for coloring - which proved to be effective but less efficient
than the classic assignment model, while the second step is based only on the
classic assignment model. Both models could be subject to improvements
using cuts and this will be a new line of research especially for the (newer)
partial ordering model.
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