On the Relationship Between
Matiyasevich’s and Smoryński’s Theorems

Agnieszka Peszek1, Apoloniusz Tyszka2

Abstract

Let R be a non-zero subring of \mathbb{Q} with or without 1. We assume that for every positive integer n there exists a computable surjection from \mathbb{N} onto R^n. Every $R \in \{\mathbb{Z}, \mathbb{Q}\}$ satisfies these conditions. Matiyasevich’s theorem states that there is no algorithm to decide whether or not a given Diophantine equation has a solution in non-negative integers. Smoryński’s theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. We prove: (1) Smoryński’s theorem easily follows from Matiyasevich’s theorem, (2) Hilbert’s Tenth Problem for solutions in R has a positive solution if and only if the set of all Diophantine equations with a finite number of solutions in R is recursively enumerable. “Hilbert’s Tenth Problem for solutions in R” is the problem of whether there exists an algorithm which for any given Diophantine equation with integer coefficients, can decide whether the equation has a solution with all unknowns taking values in R.

Keywords: computable set, Davis-Putnam-Robinson-Matiyasevich theorem, Diophantine equation which has at most finitely many solutions, Hilbert’s Tenth Problem for solutions in a subring of \mathbb{Q}, Matiyasevich’s theorem, recursively enumerable set, Smoryński’s theorem.

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License

1University of Agriculture, Faculty of Production and Power Engineering, Balicka 116B, 30-149 Kraków, Poland, Email: Agnieszka.Peszek@urk.edu.pl

2University of Agriculture, Faculty of Production and Power Engineering, Balicka 116B, 30-149 Kraków, Poland, Email: rttyszka@cyf-kr.edu.pl
1 Introduction

The Davis-Putnam-Robinson-Matiyasevich theorem states that every recursively enumerable set $\mathcal{M} \subseteq \mathbb{N}$ has a Diophantine representation; that is

$$a \in \mathcal{M} \iff \exists x_1, \ldots, x_m \in \mathbb{N} \ W(a, x_1, \ldots, x_m) = 0$$

(R)

for some polynomial W with integer coefficients, see [7]. The representation (R) is said to be infinite-fold if for every $a \in \mathcal{M}$ the equation $W(a, x_1, \ldots, x_m) = 0$ has infinitely many solutions $(x_1, \ldots, x_m) \in \mathbb{N}^m$. A stronger version of the Davis-Putnam-Robinson-Matiyasevich theorem states that each recursively enumerable subset of \mathbb{N} has an infinite-fold Diophantine representation with 9 variables, see [4], [6], [7, p. 163], and [11, p. 243].

Martin Davis’ theorem states that the set of all Diophantine equations which have at most finitely many solutions in positive integers is not recursive, see [1]. Craig Smoryński’s theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable, see [10, p. 104, Corollary 1] and [11, p. 240]. Yuri Matiyasevich’s theorem states that there is no algorithm to decide whether or not a given Diophantine equation has a solution in non-negative integers [7]. The same is true for solutions in integers and for solutions in positive integers [7].

Matiyasevich’s theorem easily follows from the Davis-Putnam-Robinson-Matiyasevich theorem without the use of Smoryński’s theorem [7]. Similarly, the stronger version of the Davis-Putnam-Robinson-Matiyasevich theorem implies that Matiyasevich’s theorem holds for Diophantine equations which have at most k variables, where $k \geq 9$, see [7]. In section 3, we show that Smoryński’s theorem easily follows from Matiyasevich’s theorem.

Let R be a non-zero subring of \mathbb{Q} with or without 1. We assume that for every positive integer n there exists a computable surjection from \mathbb{N} onto R^n. Every $R \in \{\mathbb{Z}, \mathbb{Q}\}$ satisfies these conditions. In section 4, we show that Hilbert’s Tenth Problem for solutions in R has a positive solution if and only if the set of all Diophantine equations with a finite number of solutions in R is recursively enumerable. “Hilbert’s Tenth Problem for solutions in R” is the problem of whether there exists an algorithm which for any given Diophantine equation with integer coefficients, can decide whether the equation has a solution with all unknowns taking values in R.
2 Basic Lemmas

Let \mathcal{P} denote the set of prime numbers, and let

$$\mathcal{P} = \{p_1, q_1, r_1, p_2, q_2, r_2, p_3, q_3, r_3, \ldots\},$$

where $p_1 < q_1 < r_1 < p_2 < q_2 < r_2 < p_3 < q_3 < r_3 < \ldots$.

Lemma 1 For a non-negative integer x, let $\prod_{i=1}^{\infty} p_i^{\alpha_i} \cdot q_i^{\beta_i} \cdot r_i^{\gamma_i}$ be the prime decomposition of $x + 1$. For every positive integer n, the mapping which sends $x \in \mathbb{N}$ into

$$\left((-1)^{\alpha_1} \cdot \frac{\beta_1}{\gamma_1 + 1}, \ldots, (-1)^{\alpha_n} \cdot \frac{\beta_n}{\gamma_n + 1}\right) \in \mathbb{Q}^n$$

is a computable surjection from \mathbb{N} onto \mathbb{Q}^n.

Lemma 2 (cf. [8, Lemma 15, p. 257]). A Diophantine equation $D(x_1, \ldots, x_p) = 0$ has no solutions in non-negative integers (alternatively, integers, positive integers, rationals) x_1, \ldots, x_p if and only if the equation $D(x_1, \ldots, x_p) + 0 \cdot x_{p+1} = 0$ has at most finitely many solutions in non-negative integers (respectively, integers, positive integers, rationals) x_1, \ldots, x_{p+1}.

Proof: We present the proof for solutions in non-negative integers. Let A_1 denote the following statement: A Diophantine equation $D(x_1, \ldots, x_p) = 0$ has no solutions in non-negative integers x_1, \ldots, x_p. Let A_2 denote the following statement: The equation $D(x_1, \ldots, x_p) + 0 \cdot x_{p+1} = 0$ has at most finitely many solutions in non-negative integers x_1, \ldots, x_{p+1}. We need to prove that

$$(A_1 \Rightarrow A_2) \land (A_2 \Rightarrow A_1)$$

We present the proof that A_1 implies A_2. The statement A_1 implies that the set of all tuples $(x_1, \ldots, x_{p+1}) \in \mathbb{N}^{p+1}$ which satisfy $D(x_1, \ldots, x_p) + 0 \cdot x_{p+1} = 0$ is empty. The empty set is finite. We present the proof that A_2 implies A_1. Assume, on the contrary, that non-negative integers a_1, \ldots, a_p satisfy $D(a_1, \ldots, a_p) = 0$. Then,

$$\forall x_{p+1} \in \mathbb{N} \quad D(a_1, \ldots, a_p) + 0 \cdot x_{p+1} = 0$$

Therefore, infinitely many tuples $(x_1, \ldots, x_{p+1}) \in \mathbb{N}^{p+1}$ solve the equation $D(x_1, \ldots, x_p) + 0 \cdot x_{p+1} = 0$, a contradiction. The proof for solutions in integers (positive integers, rationals) is analogous. \square
Lemma 3 (cf. Smoryński’s theorem in [8, p. 258]). If the set of all Diophantine equations which have at most finitely many solutions in non-negative integers (alternatively, integers, positive integers, rationals) is recursively enumerable, then there exists an algorithm which decides whether or not a given Diophantine equation has a solution in non-negative integers (respectively, integers, positive integers, rationals).

Proof: We present the proof for solutions in non-negative integers. Suppose that \(\{S_i = 0\}_{i=0}^{\infty} \) is a computable sequence of all Diophantine equations which have at most finitely many solutions in non-negative integers. By Lemma 2, the execution of Flowchart 1 decides whether or not a Diophantine equation \(D(x_1, \ldots, x_p) = 0 \) has a solution in non-negative integers. The flowchart algorithm uses a computable surjection \(\varphi : \mathbb{N} \to \mathbb{N}^p \).

![Flowchart 1](image)

The flowchart algorithm always terminates because there exists a non-negative integer \(i \) such that
\[
(D(x_1, \ldots, x_p) + 0 \cdot x_{p+1} = S_i) \lor (D(\varphi(i)) = 0)
\]
Indeed, for every Diophantine equation \(D(x_1, \ldots, x_p) = 0 \), the flowchart algorithm finds a solution in non-negative integers, or finds the equation \(D(x_1, \ldots, x_p) + 0 \cdot x_{p+1} = 0 \) on the infinite list \([S_0, S_1, S_2, \ldots]\) if the equation \(D(x_1, \ldots, x_p) = 0 \) is not solvable in non-negative integers.

For solutions in integers, we choose a computable surjection \(\varphi : \mathbb{N} \rightarrow \mathbb{Z}^p \), modify the definition of the sequence \(\{S_i = 0\}_{i=0}^{\infty} \), and modify the two print instructions. For solutions in positive integers, we choose a computable surjection \(\varphi : \mathbb{N} \rightarrow (\mathbb{N} \setminus \{0\})^p \), modify the definition of the sequence \(\{S_i = 0\}_{i=0}^{\infty} \), and modify the two print instructions. For solutions in rationals, we apply Lemma 1 and choose a computable surjection \(\varphi : \mathbb{N} \rightarrow \mathbb{Q}^p \), modify the definition of the sequence \(\{S_i = 0\}_{i=0}^{\infty} \), and modify the two print instructions. \(\square \)

The proof in [8, p. 258] uses a computable surjection from \(\mathbb{N} \setminus \{0, 1\} \) onto \(\mathbb{N}^p \) which is explicitly defined.

3 Main Results

Theorem 1 (cf. [8, Theorem 12, p. 258]). The set of all Diophantine equations which have at most finitely many solutions in non-negative integers (integers, positive integers) is not recursively enumerable.

Proof: It follows from Lemma 3 and Matiyasevich’s theorem. \(\square \)

Let \(\mathcal{E} \) denote the set of all Diophantine equations \(D(x_1, \ldots, x_p) = 0 \) such that \(p \in \mathbb{N} \setminus \{0\} \) and the polynomial \(D(x_1, \ldots, x_p) \) truly depends on all the variables \(x_1, \ldots, x_p \). The last phrase means that for every \(i \in \{1, \ldots, p\} \) the polynomial \(D(x_1, \ldots, x_p) \) involves a non-zero monomial which is divided by \(x_i \), if \(D(x_1, \ldots, x_p) \) is written as the sum of a minimal number of monomials.

Lemma 4 A Diophantine equation \(D(x_1, \ldots, x_p) = 0 \) has no solutions in non-negative integers \(x_1, \ldots, x_p \) if and only if the equation \((2x_{p+1} + 1) \cdot D(x_1, \ldots, x_p) = 0 \) has at most finitely many solutions in non-negative integers \(x_1, \ldots, x_{p+1} \).

Lemma 5 If a polynomial \(D(x_1, \ldots, x_p) \in \mathbb{Z}[x_1, \ldots, x_p] \) truly depends on all the variables \(x_1, \ldots, x_p \), then the polynomial \((2x_{p+1} + 1) \cdot D(x_1, \ldots, x_p) \) truly depends on all the variables \(x_1, \ldots, x_{p+1} \).
Theorem 2 The equations which belong to E and which have at most finitely many solutions in non-negative integers form a set which is not recursively enumerable.

Proof: We reformulate Lemma 3 for Diophantine equations which belong to E. The proof, which uses Lemmas 3–5, is analogous to the proof of Theorem 1.

For a positive integer k, let $Dioph(k)$ denote the set of all Diophantine equations which have at most k variables and at most finitely many solutions in non-negative integers.

Theorem 3 For every integer $k \geq 9$, the set $Dioph(k)$ is not recursively enumerable.

Proof: Let $\{D_j = 0\}_{j=0}^\infty$ be a computable sequence of all Diophantine equations which have at most k variables.

Start

Input a Diophantine equation $D(x_1, \ldots, x_p) = 0$, where $p \leq k$

$j := 0$

Is $D(x_1, \ldots, x_p) = D_j$?

No

$j := j + 1$

Yes

$i := 0$

Is $W(j, x_1, \ldots, x_9) = G_i$?

No

$i := i + 1$

Yes

Is $D(\varphi(i)) = 0$?

No

Print "The equation $D(x_1, \ldots, x_p) = 0$ is not solvable in non-negative integers"

Yes

Print "The equation $D(x_1, \ldots, x_p) = 0$ is solvable in non-negative integers"

Stop

Flowchart 2
By the stronger version of the Davis-Putnam-Robinson-Matiyasevich theorem, there exists a polynomial $W(x, x_1, \ldots, x_9) \in \mathbb{Z}[x, x_1, \ldots, x_9]$ such that for every non-negative integer j, the equation $D_j = 0$ is solvable in non-negative integers if and only if the equation $W(j, x_1, \ldots, x_9) = 0$ has infinitely many solutions in non-negative integers x_1, \ldots, x_9. Equivalently, for every non-negative integer j, the equation $D_j = 0$ has no solutions in non-negative integers if and only if the equation $W(j, x_1, \ldots, x_9) = 0$ has at most finitely many solutions in non-negative integers x_1, \ldots, x_9. Suppose, on the contrary, that $\{G_i = 0\}_{i=0}^{\infty}$ is a computable sequence of all equations from $Dioph(k)$. Then, the execution of Flowchart 2 decides whether or not a Diophantine equation $D(x_1, \ldots, x_p) = 0$ (where $p \leq k$) has a solution in non-negative integers x_1, \ldots, x_p. The flowchart algorithm uses a computable surjection $\varphi: \mathbb{N} \to \mathbb{N}^p$.

Thus we have a contradiction to Matiyasevich’s theorem. The flowchart algorithm always terminates because there exist non-negative integers i and j such that

$$(D(x_1, \ldots, x_p) = D_j) \land ((W(j, x_1, \ldots, x_9) = G_i) \lor (D(\varphi(i)) = 0)) \quad \square$$

4 Hilbert’s Tenth Problem for Solutions in a Subring of \mathbb{Q}

Hilbert’s Tenth Problem for solutions in \mathbb{Q} remains unsolved, see [2] and [7]. Harvey Friedman conjectures that the set of all Diophantine equations which have only finitely many rational solutions is not recursively enumerable, see [3]. For solutions in rationals, Lemma 3 claims that a negative solution to Hilbert’s Tenth Problem for solutions in \mathbb{Q} implies that the set of all Diophantine equations with a finite number of rational solutions is not recursively enumerable. We show the converse implication, see Theorem 5.

Guess ([5, p. 16]). The question of whether or not a given Diophantine equation has at most finitely many rational solutions is decidable with an oracle that decides whether or not a given Diophantine equation has a rational solution.

Originally, Minhyong Kim formulated the Guess as follows: for rational solutions, the finiteness problem is decidable relative to the existence problem.

Assume that K is an infinite subset of \mathbb{Q} and for every positive integer n there exists a computable surjection from \mathbb{N} onto K^n, cf. Lemma 1.
Theorem 4 If the set of all Diophantine equations which have at most finitely many solutions in \(K \) is recursively enumerable, then there exists an algorithm which decides whether or not a given Diophantine equation has a solution in \(K \).

Proof: The proof is analogous to the proof of Lemma 3.

In the next three lemmas we assume that \(\{0\} \subset R \subset \mathbb{Q} \) and \(r \cdot \mathbb{Z} \subset R \) for every \(r \in R \). Every non-zero subring \(R \) of \(\mathbb{Q} \) satisfies these conditions even if \(1 \notin R \).

Lemma 6 There exists a non-zero integer \(m \in R \).

Proof: There exist \(m, n \in \mathbb{Z} \setminus \{0\} \) such that \(\frac{m}{n} \in R \). Hence, \(m = \frac{m}{n} \cdot n \in (\mathbb{Z} \setminus \{0\}) \cap R \).

Lemma 7 Let \(m \in (\mathbb{Z} \setminus \{0\}) \cap R \). We claim that for every \(b \in R \), \(b \neq 0 \) if and only if the equation

\[
y \cdot b - m^2 - \sum_{i=1}^{4} y_i^2 = 0
\]

is solvable in \(y, y_1, y_2, y_3, y_4 \in R \).

Proof: If \(b = 0 \), then for every \(y, y_1, y_2, y_3, y_4 \in R \),

\[
y \cdot b - m^2 - y_1^2 - y_2^2 - y_3^2 - y_4^2 = -m^2 - y_1^2 - y_2^2 - y_3^2 - y_4^2 \leq -m^2 < 0
\]

If \(b \neq 0 \), then \(b = \frac{p}{q} \), where \(p \in \mathbb{N} \setminus \{0\} \) and \(q \in \mathbb{Z} \setminus \{0\} \). In this case, we define \(y \) as \(m^2 \cdot q \) and observe that

\[
m^2 \cdot q = (m \cdot q) \cdot m \in R
\]

as \(m \cdot q \in R \) and \(m \in \mathbb{Z} \). Hence,

\[
y \cdot b = (m^2 \cdot q) \cdot \frac{p}{q} = m^2 \cdot p \in m^2 \cdot (\mathbb{N} \setminus \{0\})
\]

By Lagrange’s four-square theorem, there exist \(t_1, t_2, t_3, t_4 \in \mathbb{N} \) such that

\[
\frac{y \cdot b - m^2}{m^2} = t_1^2 + t_2^2 + t_3^2 + t_4^2
\]

Therefore,

\[
y \cdot b - m^2 - (m \cdot t_1)^2 - (m \cdot t_2)^2 - (m \cdot t_3)^2 - (m \cdot t_4)^2 = 0,
\]

where \(m \cdot t_1, m \cdot t_2, m \cdot t_3, m \cdot t_4 \in R \).
Lemma 8 We can uniquely express every rational number \(r \) as \(\frac{\hat{r}}{r} \), where \(\hat{r} \in \mathbb{Z}, r \in \mathbb{N} \setminus \{0\} \), and the integers \(\hat{r} \) and \(r \) are relatively prime. If \(r \in R \), then \(\frac{\hat{r}}{r} \in R \).

Proof: For every \(r \in R \), \(\frac{\hat{r}}{r} = r \cdot \frac{\hat{r}}{r} \in r \cdot \mathbb{Z} \subseteq R \). □

Starting from this moment up to the end of the article we assume that \(R \) is a non-zero subring of \(\mathbb{Q} \) with or without 1. We assume also that for every positive integer \(n \) there exists a computable surjection from \(\mathbb{N} \) onto \(R^n \). By Lemma 1, \(R = \mathbb{Q} \) satisfies these conditions. The same is true for \(R = \mathbb{Z} \).

Lemma 9 For every \(\theta : \mathbb{N} \rightarrow R^n \), for every \(x_1, \ldots, x_n \in R \), and for every \(k \in \mathbb{N} \), the following product

\[
\prod_{(r_1, \ldots, r_n) \in \{\theta(0), \ldots, \theta(k)\}} \sum_{i=1}^{n} (x_i \cdot r_i - \frac{\hat{r}_i}{r_i})^2
\]

(1)

differs from 0 if and only if \((x_1, \ldots, x_n) \notin \{\theta(0), \ldots, \theta(k)\} \). Product (1) belongs to \(R \).

Proof: The last claim follows from Lemma 8. □

Theorem 5 A positive solution to Hilbert’s Tenth Problem for solutions in \(R \) implies that the set of all Diophantine equations with a finite number of solutions in \(R \) is recursively enumerable.

Proof: We assume a positive solution to Hilbert’s Tenth Problem for solutions in \(R \). By Lemma 6, there exists a non-zero integer \(m \in R \). By Lemmas 7–9, the algorithm in Flowchart 3 halts if and only if a Diophantine equation \(D(x_1, \ldots, x_n) = 0 \) has at most finitely many solutions in \(R \). □

The algorithm in Flowchart 3 depends on \(m \in (\mathbb{Z} \setminus \{0\}) \cap R \).

Lemma 10 We can compute some element of \((\mathbb{Z} \setminus \{0\}) \cap R \).

Proof: We compute the smallest \(i \in \mathbb{N} \) such that \(\theta(i) \) starts with a non-zero integer. This integer belongs to \((\mathbb{Z} \setminus \{0\}) \cap R \). □

Lemma 10 leads to a constructive proof of Theorem 5. Theorems 4 and 5 imply the next theorem.

Theorem 6 Hilbert’s Tenth Problem for solutions in \(R \) has a positive solution if and only if the set of all Diophantine equations with a finite number of solutions in \(R \) is recursively enumerable.
For $R = \mathbb{Z}$, Theorem 6 claims that Matiyasevich’s theorem for solutions in integers implies Smoryński’s theorem for solutions in integers, and vice versa.

Theorems 4-6 hold under weaker assumptions, see [9].

Acknowledgement. Agnieszka Peszek prepared the flowcharts in TikZ. Apoloniusz Tyszka wrote the article. Both authors are grateful to an anonymous referee for here or his useful comments.

References

[2] M. Davis. Representation Theorems for Recursively Enumerable Sets and a Conjecture Related to Poonen’s Large Subring of \mathbb{Q}. Journal...
Relationship Between Matiyasevich’s and Smoryński’s Theorems

© Scientific Annals of Computer Science 2019