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Abstract. We introduce the RMT tool, which takes as input a constrained term rewriting system R
and proves reachability properties of the form ∀x̃.(c1(x̃)→ ∃ỹ.(c2(x̃, ỹ)∧ t1(x̃) V∗R t2(x̃, ỹ))), where
c1, c2 are constraints over the variables x̃ and respectively x̃∪ỹ and t1, t2 are terms over the variables
x̃ and respectively x̃∪ ỹ. By the relation V∗R, we mean that t2(x̃, ỹ) is reachable across all paths in
R starting in t1(x̃). The reachability guarantee is sound for terminating paths starting in instances
of t1(x̃) and it was initially motivated by proving partial correctness of programs. The constrained
term rewriting system is allowed to contain both interpreted and uninterpreted function symbols.
The interpreted symbols are part of a theory that is a parameter to our tool and all rewriting steps
are defined modulo this theory. In practice, the interpreted symbols are handled by relying on an
SMT solver.

Keywords: constrained term rewriting systems, satisfiability modulo theories, reachability, partial
correctness

Introduction
Program analysis and program verification play an important role in the field of software development,
especially for critical systems. There have been several lines of work in which program analyses are reduced
to queries on term rewriting systems with logical constraints ([12,13,24,14]). By the same reduction,
correctness of a program corresponds to reachability in such constrained term rewriting systems (from
hereon, CTRSs). Moreover, CTRSs can faithfully capture the operational semantics of any programming
language ([32]), which means that the question of program correctness corresponds exactly to the problem
of reachability in these CTRSs, allowing for language-parametric proofs of programs ([28,29,7,8]).

Therefore, tools that operate on CTRSs can be used to reason about real-world programs. Existing
tools for CTRSs (e.g., [17,19]) concentrate on proving termination, confluence and term equivalence but
there is a lack of tools that can prove reachability properties, which correspond to correctness claims; our
system is meant to fill this gap.

We introduce RMT, a tool for proving reachability properties in constrained term rewriting systems
modulo theories. It is available at

http://profs.info.uaic.ro/˜stefan.ciobaca/rmt.

RMT is a command line tool that reads a file containing (one or more) CTRSs and a number of reachability
queries. RMT can establish reachability in any bounded number of steps by exhaustive symbolic exploration
of the possible rewrites, but it can also prove that a reachability property holds (even when the number of
rewrite steps is not bounded a priori). In order to prove reachability properties in CTRSs, the user must
provide, besides the reachability property itself, a number of helper reachability properties that also hold
and which play the same role as invariants in regular program proofs. We call these helper properties
circularities, as introduced by Ros,u and Lucanu in [30]. For example, given the CTRS

R = { init(u, v)⇒ loop(u, v),
loop(u, v)⇒ loop(v, u− v) if v 6= 0,
loop(u, v)⇒ done(u) if v = 0},

which implements Euclid’s algorithm, RMT can establish the following reachability property, which encodes
the correctness of the algorithm:

∀u, v.∃x. (x = gcd(u, v) ∧ init(u, v) V+
R done(x)),
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with the help of the following circularity:

∀u, v.∃x.(x = gcd(u, v) ∧ loop(u, v) V∗R done(x)).

The function symbol gcd is part of the built-in theory. The circularity encodes the behaviour of the
rewriting loop and it essentially plays the same role as an invariant. There is no need to trust the
circularities given by the user, as RMT will prove them as well. When RMT establishes a reachability property,
then the property is sound for terminating instances of the terms on the left-hand side. Termination needs
to be established in other ways, as the tool does not currently check it.

Structure. Section 2 contains the theoretical background relevant to our tool, including our modelling
of constrained term rewriting systems modulo theories. Section 3 gives an overview of RMT and describes
the main uses cases. Section 4 describes the architecture and the implementation of RMT. It includes the al-
gorithm used for unification modulo and the algorithm implementing our procedure for reachability proofs
that is based on a sound and relatively complete proof system for partial correctness of programs ([22,7].
Section 5) concludes the paper with a discussion of the tool and of related and future work.

Constrained Term Rewriting Systems
We consider term rewriting systems with rules of the form l ⇒ r if b, where a rewrite rule intuitively
means that any instance of l such that the corresponding constraint b holds advances in the corresponding
instance of r. Such rewrite systems are sufficiently expressive to handle the encoding of the operational
semantics of programming languages ([32]).

Signature. We consider a many-sorted built-in signature Σ0 = (S0,F0) consisting of a set of sorts S0
and a set of function symbols Σ0. Each function symbol f ∈ F0 has an arity denoted by f : s1× . . .×sn →
s, where s1, . . . , sn, s ∈ S0 are built-in sorts. We also consider an order-sorted signature Σ = (S,≤,F),
where S is a set of sorts, ≤ is the subsorting relation and F is the set of function symbols (each function
symbol f ∈ F also having an arity denoted by f : s1 × . . .× sn → s, with s1, . . . , sn, s ∈ S).

We assume that Σ extends Σ0 as follows: (1) S0 ⊆ S; (2) ≤ ⊆ S × (S \ S0) is the subsorting relation
(as the built-in theory is fixed, the built-in sorts are not allowed to be supersorts of any other sort) and
(3) all built-in function symbols appear in F : F0 ⊆ F .

Additionally, for simplicity, we make the following assumptions: (1) any sort has at most one supersort;
(2) overloading of function symbols is not allowed and (3) any non-built-in function symbol f ∈ F \ F0
must return a value of a sort that is not built-in: i.e., if f : s1 × . . . × sn → s ∈ F \ F0, then the sort
s ∈ S \ S0 must not be a built-in sort.

Terms. We let X be an S-indexed family X = {Xs}s∈S of sets of variables, where Xs denotes the
variables of sort s. We assume as usual that each set Xs is countable and infinite and that no variable
has two different sorts. As is usual, we may write x ∈ X or x : s ∈ X instead of x ∈ Xs. The set of terms
of sort s ∈ S is denoted by TΣ(X )s and is built inductively as usual. A context C with a placeholder of
sort s is a term in TΣ(X ∪ { })s, where the distinguished variable of sort s is allowed to appear exactly
once. If t ∈ TΣ(X ∪ { })s then we denote by C[t] the term obtained from C by replacing the variable
with t.

Assumptions on Σ0. We make a number of assumption on Σ0, our built-in signature. These assump-
tions ensure that Σ0 contains at least the symbols required for boolean terms, which are used to encode
logical constraints: (1) the set of built-in sorts S0 must necessarily include a sort Bool ∈ S0 of booleans,
but may of course contain other sorts as well and (2) the set of built-in function symbols F0, must include
the following symbols:

true : → Bool; ¬ : Bool → Bool;
∧ : Bool × Bool → Bool; =s : s× s→ Bool, for every built-in sort s ∈ S0.

Our assumptions above are necessary to ensure that terms of sort Bool can encode any first-order
logic formula with equalities on built-in sorts and without quantifiers: true represents truth, ¬ - logical
negation, ∧ - conjunction, =s - equality over sort s. Other boolean operations like implication (→),
disjunction (∨), etc., are treated as syntactic sugar over the existing operations, as usual.

Substitutions. A substitution σ : X → TΣ(X ) is an S-indexed function such that σ(x) 6= x for finitely
many variables x ∈ X . This set of variables is the domain of σ: dom(σ) = {x | σ(x) 6= x}. We assume
as usual that σ extends homomorphically to the entire set of terms σ : TΣ(X ) → TΣ(X ). We use the



standard notion for unifiers and we denote by mgu(t1, t2) the unique (up to renaming ([1])) most general
unifier of t1 and t2, if it exists.

Built-In Model. We assume that the terms of the built-in theory Σ0 are interpreted according to a
built-in modelM0. The modelM0 assigns to every built-in sort s ∈ S0 a set JsKM0

and to every function
symbol f : s1× . . .× sn → s, with s1, . . . , sn, s ∈ S0, a function JfKM0

: Js1KM0
× . . .× JsnKMn

→ JsKM0
.

For the special case where n = 0, we assume that JfKM0
∈ JsKM0

is a single element.
Assumptions on M0. We assume that M0 assigns the expected interpretation to the sort Bool and

to the function symbols operating on Bool:

1. The sort Bool is interpreted as the set of boolean values: JBoolKM0
= {>,⊥};

2. The function symbols operating on Bool are interpreted as expected:
(a) JtrueKM0

= > is the logical true value;
(b) J¬KM0

is logical negation: J¬KM0
(x) = > iff x = ⊥, for all x ∈ JsKM0

;
(c) J∧KM0

: {>,⊥} × {>,⊥} → {>,⊥} is the logical and function:

J∧KM0
(x, y) = >iff x = > and y = >, for all x, y ∈ JBoolKM0

;

(d) J=sKM0
is the equality for sort s: J=sKM0

(x, y) = > iff x = y, for all x, y ∈ JsKM0
.

Note that M0 might contain other sorts such as Integer for integers, Int32 for 32-bit integers, Array
for arrays, etc. No assumption is made on the interpretation of these additional sorts.

Example 1. We use the following running example. Let S0 = {Bool, Int} be the set of built-in sorts. Let
F0 be the following S0 sorted signature:

F0 = {∧,¬, true,=Bool ,=Int ,≤,+,×,−, /, 0, 1, 2, . . .}

of built-in function symbols. Let the model M0 interpret the sort Bool as required: JBoolKM0
= {>,⊥}

and the sort Int as the sort of integers: JIntKM0
= Z. The built-in function symbols ∧, ¬, true, =Bool ,

=Int , ≤, +, ×, −, /, 0, 1, 2, etc. are interpreted in M0 as expected: J∧KM0
is logical and, J¬KM0

is
logical not, JtrueKM0

= > is the true value, J=BoolKM0
is equality over truth values, J=IntKM0

is equality
over integers, J≤IntKM0

is the less-than relation on integers, J+KM0
, J×KM0

, J−KM0
and J/KM0

are the
addition, multiplication, subtraction and division 1 functions on integers and J0KM0

, J1KM0
, J2KM0

, . . . are
the integers 0, 1, 2, . . ..

For function symbols that are usually written using infix notation, we adopt the same principle and
write e.g. t1 ≤ t2 instead of ≤ (t1, t2), t1 + t2 instead of +(t1, t2), t1=Intt2 instead of =Int(t1, t2), etc.

Model. Given the built-in model M0 for the built-in signature Σ0, we define a model M of Σ by
interpreting the built-in symbols according to M0 and the additional symbols freely (as constructors):

1. Any built-in sort is interpreted as in M0: for any s ∈ S0, JsKM = JsKM0
;

2. Any non-built-in sort s ∈ S \ S0 is interpreted as follows:

JsKM =
⋃

f∈Σ,f :s1×...×sn→s′,s′≤s

{f(e1, . . . , en) | e1 ∈ Js1KM, . . . , en ∈ JsnKM};

3. Any built-in function is interpreted as in M0: for all f ∈ F0, JfKM = JfKM0
;

4. Any non-built-in function is interpreted as a constructor:

for all f ∈ F \ F0, JfKM(x1, . . . , xn) = f(x1, . . . , xn);

Valuations.A valuation ρ : X → JSKM is an S-indexed function that assigns to every variable x : s ∈ X
an element of JsKM, for every sort s ∈ S. Valuations extend homomorphically to terms: ρ(f(t1, . . . tn)) =
JfKM(ρ(t1), . . . , ρ(tn)), for any terms t1, . . . , tn ∈ TΣ(X ) of appropriate sorts.

Rewrite Systems. A constrained rewrite rule of sort s ∈ S is a tuple (l, r, b), where l, r ∈ TΣ(X )s are
terms of sort s and b ∈ TΣ(X )Bool is a term of sort Bool. We make no assumptions on how variables
occur in l, b or r. For the rest of the article, we use the shorthand rewrite rule instead of constrained
rewrite rule. We also write l ⇒ r if b instead of (l, r, b) for such a rewrite rule. We write l ⇒ r instead
of l⇒ r if true. A constrained rewrite system R is a set of constrained rewrite rules. We sometimes use
rewrite system or the CTRS instead of constrained rewrite system in the rest of the article.
1 The division function is defined to truncate the result when the division is not exact and to return an arbitrary

integer when the divisor is zero.



Definition 1 (The Transition Relation Generated by a CTRS). The interpretation of a rewrite
system R is an S-indexed transition relation ⇒R:M×M, where u⇒R v if there exists a context C[·], a
rewrite rule l⇒ r if b ∈ R and a valuation ρ : X →M such that u = ρ(C[l]), v = ρ(C[r]) and ρ(b) = >.

By ⇒∗R and respectively ⇒+
R we denote the transitive and reflexive closure and respectively the

transitive closure of ⇒R.

Example 2. Continuing Example 1, we define a signature Σ = (S,F) as follows: (1) we consider a single
non-built-in sort State: S = S0 ∪ {State}; (2) we let F = F0 ∪ {init : Int → State, loop : Int × Int →
State, done : Int → State}. We define the rewrite system R to consists of the following rules:

R =

 init(n)⇒ loop(0, n),
loop(s, n)⇒ loop(s+ n, n− 1) if 1 ≤ n,
loop(s, n)⇒ done(s) if ¬(1 ≤ n)

 ,

where s, n ∈ XInt are variables. We then have: init(3)⇒R loop(0, 3)⇒R loop(3, 2)⇒R loop(5, 1)⇒R
loop(6, 0)⇒R done(6). It is easy to see that the rewrite system computes the sum of the first n positive
naturals.

Constrained Terms. A constrained term of sort s ∈ S is a pair (t, b), where t ∈ TΣ(X )s is a term of
sort s and b ∈ TΣ(X )Bool is a term of sort Bool. We use the notation l if b for the constrained term (l, b).
Constrained terms can be seen as particular cases of matching logic formulas ([27]). A term t is identified
with the constrained term t if true.

Definition 2 (Reachability in CTRSs).
We write R |= l V+ r if b (respectively R |= l V∗ r if b) if, for all valuations ρ such that ρ(b) = >

and for all executions ρ(l)⇒R γ1 ⇒R γ2 ⇒R . . ., there exists i ∈ {1, 2, . . .} (respectively i ∈ {0, 1, 2, . . .},
where γ0 = ρ(l)) such that γi = ρ(r).

The notation captures the fact that, any element matching l if b advances, along any execution path,
into an element matching r.

Example 3. Continuing Example 2, it is possible to show that

R |= init(n) V+ done(n× (n+ 1)/2) if 0 ≤ n.

Tool Overview
In this section, we provide an overview of our tool and its capabilities. RMT is a command line tool
that processes a single file that contains the definition of any number of CTRSs and several reachability
queries and answers each query in turn. In the following subsection, we describe the two main uses of the
tool: (1) computing the set of reachable terms after a bounded number of rewrite steps and (2) proving
reachability properties where the number of rewrite steps is not necessarily bounded.
Computing the set of Reachable Terms in a Bounded Number of Rewrite Steps
We first explain how to use RMT to automatically compute the set of terms reachable in a bounded
number of rewrite steps. Figure 1 shows the input given to the tool in order to compute the direct
symbolic successors (terms reachable in one step) of the term loop(S, N) in the CTRS that we have
defined in our running example. Some parts of the input are elided and replaced with [...] for brevity.
Although the input might seem overwhelming, most of it is boilerplate needed for the interaction with
the SMT solver.

We now explain all the code in Figure 1. Any file given as input must begin with the set of sorts.
In this example we define, on the first line, three sorts: Int, Bool and State. The first two sorts are
defined as built-in and are assigned interpretations, using the / modifier. The string following / is the
interpretation of the sort, specified as the name of the set that is used in the Z3 SMT solver ([9]). After
declaring the sorts, we must declare all sub-sorting relations. In our example, there are no sub-sorts and
therefore the example sub-sorting is commented out.

Next follows the set of function symbols, introduced by the signature declaration on lines 3 to 10.
Each function symbol is defined using the syntax name : Sort1 ... SortN -> Sort, which specifies the



1 sorts Int / "Int", Bool / "Bool", State; // subsort Int < State;

signature mzero : -> Int / "0", mone : -> Int / "1",
mplus : Int Int -> Int / "+", mminus : Int Int -> Int / "-",
mle : Int Int -> Bool / "<=", mequals : Int Int -> Bool / "=", [...]

6
bequals : Bool Bool -> Bool / "=", band : Bool Bool -> Bool / "and",
bimplies : Bool Bool -> Bool / "=>", true : -> Bool / "true", [...]

init : Int -> State, loop : Int Int -> State, done : Int -> State;
11

variables B : Bool, S : Int, N : Int, I : Int;

rewrite-system simplifications
bnot(false) => true, bnot(true) => false, bnot(bnot(B)) => B, [...];

16
constrained-rewrite-system sum

init(N) => loop(mzero, N),
loop(S, N) /\ mle(mone, N) => loop(mplus(S, N), mminus(N, mone)),
loop(S, N) /\ bnot(mle(mone, N)) => done(S);

21
search in sum : loop(S, N);

Fig. 1. Computing the successors of a (constrained) term.

arity of the symbol. If a slash symbol (“/”) follows the declaration, it means that the function symbol is
built-in and the string following “/” defines the interpretation of the symbol. The interpretation is given
as the name of the function as defined in SMT-LIB ([3](; we currently also allow extensions specific to
Z3 ([9]).

For our example, we have defined a bunch of function symbols operating on integers and prefixed with
m: e.g. mplus is a function symbol interpreted as addition (+). There are also several function symbols
starting with b which operate on booleans: e.g. bnot is defined to be a function symbol interpreted by
logical negation. We also need to declare the function symbols for the constants 0, 1, . . . ∈ Z. In our case,
we use the nullary function symbols mzero and mone, interpreted as 0 and respectively 1. We currently
require the user to declare these symbols in order to obtain maximum flexibility, but in the future we
might revisit this decision and reserve special names for the symbols that are used extensively, such as
integers.

The last chunk of symbols of the signature declaration, on line 10, consists of the free symbols init,
loop and done, which are used in our running example. After declaring the function symbols, we require
to define all variables (line 12) that are used afterwards in the file by providing their sort. In our example,
we have the following variables: B of sort Bool and S,N, I of sort Int.

The next declaration (lines 14 and 15) is a rewrite system having the name simplifications. If there
is a rewrite system with this name in the file, it will used to simplify terms (including constraints) before
they are presented to the user, but also during the internal computations. This helps with legibility. It
is the responsibility of the user to provide sound rewrite rules that terminate. Note that all terms are
written in infix notation. This is in order to eliminate parsing ambiguities which can, in our experience,
be a source of unexpected and difficult to debug errors.

The rest of the file consists of any number of declarations of rewrite systems and constrained rewrite
systems, followed by a number of queries. In our example, there is a single constrained rewrite system
called sum which encodes the rewrite system from Example 2. Note that constrained rules l⇒ r if b are
written in the format l /\ b => r. For example, the rewrite rule loop(s, n)⇒ loop(s+n, n−1) if 1 ≤ n
is written in the input as loop(S, N) /\ mle(mone, N) => loop(mplus(S, N), mminus(N, mone)).
Although this verbosity seems unnecessary, it eliminates ambiguities and saves time in the long run.

There is a single query in the file, which asks for the direct symbolic successors of loop(S, N) in the
rewrite system sum. The result of the query is:
2 solutions.
Solution #1: loop(mplus(S,N),mminus(N,mone)) /\ mle(mone,N)

3 Solution #2: done(S) /\ bnot(mle(mone,N))

For a query of the form search t /\ b (where the constraint /\ b is optional), the result is a list
of solutions written in the form s /\ c, where s is a term of the same sort as t and c is a constraint
(a term of sort Bool). The list of solutions should intuitively be interpreted as follows: if c holds, then
any instance of t if b rewrites in one step into s. If we change our query to search in sum : loop(S,
mtwo);, then the RMT returns a single solution:



1 solutions.
2 Solution #1: loop(mplus(S,mtwo),mminus(mtwo,mone)) /\ mle(mone,mtwo)

The solution corresponds to the application of the second rewrite rule (line 19, Figure 1) in the rewrite
system. The third rule (line 20, Figure 1) cannot be applied because the constraint bnot(mle(mone,
mtwo)) is not satisfiable. The RMT tool detects unsatisfiable constraints by passing them to the Z3 SMT
solver. If a constraint cannot be proven unsatisfiable by Z3 (i.e. Z3 returns sat or unknown), then RMT will
take the conservative approach and assume it might be satisfiable. Note that constraints are simplified
only by applying rules in the simplifications rewrite system, if such as system is declared. This means
that constraints can sometimes be presented in a form that is more complex than necessary.

By default, RMT computes all direct successors of the queried term. However, it is possible to determine
all terms reachable in any number of steps by providing two optional parameters: the minimum and
maximum search depth. For example, to find all elements reachable in one up to two steps, we use
the following query: search [1,2] in sum : loop(S, N);. Then RMT returns all successors which are
reachable in any number of steps between 1 and 2:
4 solutions.
Solution #1: loop(mplus(S,N),mminus(N,mone)) /\ mle(mone,N)

3 Solution #2: loop(mplus(mplus(S,N),mminus(N,mone)),mminus(mminus(N,mone),mone))/\
band(mle(mone,N),mle(mone,mminus(N,mone)))

Solution #3: done(mplus(S,N)) /\ band(mle(mone,N),bnot(mle(mone,mminus(N,mone))))
Solution #4: done(S) /\ bnot(mle(mone,N))

Proving Reachability Properties
Searching, as described in Section 3.1, can be used to explore the behaviour of any constrained term in
a bounded number of steps. This is useful for many reasons; however, the most important use case for
RMT is to prove reachability properties in constrained term rewriting systems, in the sense of Definition 2,
even if the number of transitions is unbounded.

We will continue Example 3 and we will show how to use RMT to prove that

R |= init(n) V+ done(n× (n+ 1)/2) if 0 ≤ n. (1)

We would like to emphasise that our tool is able to establish such properties, but these properties hold
for terminating paths that start in ground instances of the left-hand side that satisfy the constraint,
just like in partial correctness of programs (as opposed to total correctness, were termination is also
established). RMT cannot prove termination and therefore termination needs to be established in other
ways: for example, by hand or by using other tools such as [20,17].

In order to prove a reachability property such as the one in Equation (1), we will need to additionally
prove a helper reachability property that is more general. These helper properties play roughly the same
role of invariants in program proofs and we call them circularities, as introduced in [30]. A circularity
is very much like a regular (constrained) rewrite rule, but, before it is applied, it must be proven to be
sound with respect to the trusted rewrite rules. However, a circularity can be applied to prove itself, after
progress has been made in the rewrite system. This use of circularities is sound ([22,7]) for terminating
paths.

In order to prove our desired reachability property in Equation (1), we need to prove alongside it
a single additional circularity, which will be used to account for the repetitive behaviour of the rewrite
system:

R |= loop(s, i) V+ done(s+ i× (i+ 1)/2) if 0 ≤ i. (2)

All reachability properties that RMT needs to prove, including circularities, should be placed in a single
CTRS. In the tool, we do not make any distinction between the reachability properties that are the final
objective of our proof and the helper reachability properties and we call all of them circularities.

Continuing our running example, we place both the desired reachability property in Equation (1) and
the circularity in Equation (2) as rewrite rules that are part of a rewrite system called circularities,
featured in Figure 2.

The prove command then tries to prove that all of the reachability properties given as rewrite rules
in the rewrite system circularities are sound with respect to the rewrite system sum. In our case, the
proof succeeds and the tool outputs a proof tree shown in Figure 3. RMT outputs the terms appearing
in the proof using mixed syntax to save space: all interpreted function symbols are printed using SMT
syntax. In the output, we replaced some subparts of the proof tree by [ ... ] in order to save space.



constrained-rewrite-system circularities
init(N) /\ mle(mzero,N) => done(mdiv(mtimes(N,mplus(N,mone)),mtwo)),
loop(S,I) /\ mle(mzero,I) => done(mplus(S,mdiv(mtimes(I,mplus(I,mone)),mtwo)));

4 prove in sum : circularities;

Fig. 2. Input needed for the set of reachability properties given in the circularities rewrite system.

1 Proving circularity #1:
--------

- init(N) /\ false -----> done((div (* N (+ N 1)) 2))
- init(N) /\ false =(C)=> done((div (* N (+ N 1)) 2))
[ ... ]

6 * Proved that loop(0,N) /\ (<= 0 N) => done((div (* N (+ N 1)) 2))
- init(N) /\ (<= 0 N) =(R)=> done((div (* N (+ N 1)) 2))

* Proved that init(N) /\ (<= 0 N) => done((div (* N (+ N 1)) 2))
--------
Circularity #1 proved.

11
Proving circularity #2:
--------

- loop(S,I) /\ false -----> done((+ S (div (* I (+ I 1)) 2)))
- loop(S,I) /\ false =(C)=> done((+ S (div (* I (+ I 1)) 2)))

16 [ ... ]
* Proved that loop((+ S I),(- I 1)) /\ (and (<= 0 I) (<= 1 I)) =>

done((+ S (div (* I (+ I 1)) 2)))
[ ... ]
* Proved that done(S) /\ (and (<= 0 I) (not (<= 1 I))) =>

21 done((+ S (div (* I (+ I 1)) 2)))
- loop(S,I) /\ (<= 0 I) =(R)=> done((+ S (div (* I (+ I 1)) 2)))

* Proved that loop(S,I) /\ (<= 0 I) => done((+ S (div (* I (+ I 1)) 2)))
--------
Circularity #2 proved.

Fig. 3. The result of running the prove command when a proof succeeds.

The system starts by turning all circularities into proof obligations. When trying to discharge a proof
obligation of the form l V∗ r if b, the system first tries to see if l if b implies r, in the sense that
for any valuation ρ, if ρ(b) = >, then ρ(l) = ρ(r). If this is the case, then the proof is done. However,
it might be that l if b implies r just in some cases. In general, the system will find a constraint c
such that l if (b ∧ c) implies r. It is always possible to find such a contraint: in the worst case we can
pick c = false. This is exactly what happens when we try to prove the first circularity, namely that
init(N) V done(N × (N + 1)/2). As there can be no implication, the system finds that the weakest
constraint under which the implication holds is false and therefore outputs the line - init(N) /\
false -----> done((div (* N (+ N 1)) 2)) (the long arrow means implication).

The next step is to try to apply the circularities themselves. This is only allowed once progress is
made and, as we have not made progress yet, the circularities cannot be applied. The system outputs -
init(N) /\ false =(C)=> done((div (* N (+ N 1)) 2)), meaning that circularities can be applied
only if false. The next line, namely * Proved that loop(0,N) /\ (<= 0 N) => done((div (* N (+
N 1)) 2)), means that the system managed to prove this reachability property recursively. The part of
the proof that is missing and which is denoted by [ ... ] is a recursive proof of this reachability property.
Since the only successor of init(N) /\ (<= 0 N) is loop(0,N), it follows that what we wanted to prove
also holds: * Proved that init(N) /\ (<= 0 N) => done((div (* N (+ N 1)) 2)).

The second circularity is more interesting. It cannot be discharged directly by implication or circu-
larities and therefore we need to look at each successor of loop(S,I) /\ (<= 0 I). There are two cases
to consider: when (<= 1 I) the successor is loop((+ S I),(- I 1)) and when (not (<= 1 I)) the
sucessor is done(S). The system recursively proves that it is possible to reach the final state from both
successors (in the lines starting with *) and therefore concludes that the circularity holds.

The case above is the happy case in which the proof goes through. However, if the circularities provided
are not strong enough or if the depth limit of the proof tree is reached, then the prove command fails.
In this case, the proof obligations that could not be discharged are printed out and they may be used in
order to discover why the proof did no go through and to improve the circularities. For example, one of
typical mistakes is to forget the constraint mle(N, mzero):
constrained-rewrite-system circularities

init(N) => done(mdiv(mtimes(N,mplus(N,mone)),mtwo)),
loop(S,I) => done(mplus(S,mdiv(mtimes(I,mplus(I,mone)),mtwo)));

prove in sum : circularities;



The reachability properties given in the circularities rewrite system do not hold since when N is
negative, the result is not the sum of the first N positive natural numbers (it is zero instead). In this
case, the system tries to make the proof, but the second circularity fails. The output explains which proof
obligations failed:

1 Circularity #2 not proved. The following proof obligations failed:
done(S) /\ (and (not (<= 1 I)) (not (=> (not (<= 1 I))

(= (+ S (div (* I (+ I 1)) 2)) S))))
=> done((+ S (div (* I (+ I 1)) 2)))

By investigating the condition, we see that the system could not prove that (div (* I (+ I 1)) 2)
is zero when I < 1. This suggests that we need to disallow I < 0, just as we have shown in Figure 2.

The prove command also features two optional parameters: the maximum depth of the proof (by
default 100) and the maximum branching depth of the proof (by default 2). By branching depth we mean
the number of rewrite steps where at least two branches are possible. So the previous query prove in
sum : circularities; is equivalent to the command prove [100,2] in sum : circularities;. If
the proof fails because of the depth limitations, the user can try to increase these parameters.

Architecture and Implementation
The RMT tool is written entirely in C++. It contains roughly 5000 lines of code, including comments and
blank lines. RMT depends only on the standard C++ libraries and it can be compiled by any relatively
modern C++ compiler out of the box. The only dependency is the Z3 SMT solver, which should be
installed and its binary should be in the system path, as RMT interacts with Z3 through system calls.

At the heart of RMT is a hierarchy of classes for representing variables, function symbols and terms.
Terms are stored in DAG format, with maximum structure sharing. The Term class is abstract and there
are two derived classes: VarTerm, which stores terms that are variables and FunTerm, which stores terms
that start with a function symbol. All terms are stored as pointers to an instance of Term. The FunTerm
class contains, in addition to the function symbol, an array of Term pointers which contain the arguments
to the function symbol.

All terms are created by a factory which maintains a pool of terms and which ensures that any single
term is only allocated once: if the term already exists, it returns the existing pointer to this term. This
makes structure sharing easy and, moreover, it means that syntactic term equality is equivalent to a
pointer comparison, which is very fast. Constraints are stored internally as terms of sort Bool, which is
what all modern automated reasoning systems aim to do ([21]).

The syntactic unification operation is implemented in essentially linear time and there is aggressive
caching of the results of rewrites and unifications. The current bottleneck of the system is represented by
the calls to Z3, which take place by writing a file in SMT-LIB ([3]) format and making a system call to
Z3. This is not efficient, but it is very flexible since we can use other SMT solvers very easily. In the future
however, we may want to revisit this design choice as calling Z3 using its API would improve performance
significantly.

In the following subsections, we present the algorithms implemented in RMT for unification modulo
theories, which is used to compute the symbolic successors of a term and for proving reachability properties.

Implementation of Search

In order to compute all successors of a term, in the sense explained in Section 3.1, we employ the following
algorithm for unification modulo the built-in theory. The algorithm for unification modulo theories takes
as input two terms and produces the weakest constraint that makes the two terms equal, modulo the
built-in theory.

The algorithm is based on the notion of abstraction of a term. The abstraction of a term t is a pair
(s, σ), where (1) dom(σ) is a fresh set of variables, (2) s is a term containing only uninterpreted function
symbols and variables in the domain of σ and (3) σ(x) contains only interpreted function symbols, for
all x ∈ dom(x). The existence of the abstraction of any term is guaranteed by the assumptions made in
Section 2.

The assumptions in Section 2 ensure that the algorithm above is sound and complete. In order to
compute the successors of a constrained term t if b with respect to a constrained rewrite system, we
unify all subterms s of t (i.e. t = C[s] for some context C) with all the terms l appearing as the left-hand
side of a rewrite rule l⇒ r if b′. As usual, a fresh instance of the rule is used. Whenever s unifies with l
(with result (π, c)), we obtain a possible successor of C[s] if b, namely C[rπ] if bπ ∧ b′π. More formally,



Algorithm 1 Algorithm for Unification Modulo
1: function unification(t1, t2) . precondition: t1, t2 do not share variables
2: . returns: a substitution π and a constraint c such that |= c→ t1π = t2π
3: compute (s, σ), the abstraction of t1
4: if τ ← mgu(s, t2) exists then
5: π ← τ ◦ σ
6: c←

∧
x∈dom(σ)∩dom(τ) σ(x) = σ(τ(x))

7: return (π, c) . the terms are unifiable when c holds
8: else
9: return false . the terms are not unifiable

we establish in this way that
bπ ∧ b′π → tπ ⇒R C[rπ].

When the SMT solver can prove that the resulting constraint is unsatisfiable, the successor is dropped. If
the SMT solver shows that the constraint is satisfiable or if it cannot determine the satisfiability status
(i.e. if it returns unknown or if it time-outs), then we conservatively assume that this successor is possible.
In the implementation, we also perform a set of simplifications on the resulting constraint in order to
keep it readable: firstly, if there is a constraint of the form x = u, where x ∈ X is a variable and u is
any term, than the constraint is removed and x is replaced by u throughtout the term and the rest of
the constraint; secondly, we apply the rewrite rules in the rewrite system called simplification, if this
rewrite system exists.
Implementation of Reachability Proving
The implementation of the proof procedure is a recursive function that takes as parameters a proof
obligation (l V r if b), a set of circularities C, a constrained term rewriting system R and a boolean flag
remembering if progress has been made. The set of circularities C is syntactically given as a constrained
term rewriting system. Circularities (l, r, b) are interpreted both as all-path proof obligations l V r if b
and as regular constrained rewrite rules l ⇒ r if b, depending on context. The function always returns
successfully, but it records all proof obligations that cannot be discharged. The pseudo-code for the proof
procedure is given in Algorithm 2. In practice, there is also a depth limit implemented which does not
allow the procedure to go in an infinite loop.

Algorithm 2 Procedure for discharging proof obligations
1: procedure prove((l, b, r), C, R, progress) . prove tries to show R |= l if bV∗ r
2: . firstly, try to make a proof by implication:
3: c← the weakest constraint such that |= b ∧ c→ l = r
4: . secondly, try to make a proof by circularities:
5: if progress then . only use circularities if progress has been made
6: find all successors {si if bi}i∈{1,...,n} of the constrained term l if (b ∧ ¬c)
7: in the rewrite system C
8: for all i ∈ {1, . . . , n} do
9: prove((si, (b ∧ ¬c ∧ bi), r), C, R, progress)

10: . lastly, try to make a proof by rewriting:
11: find all successors {ti if di}i∈{1,...,m} of the constrained term
12: l if (b ∧ ¬c ∧ ¬b1 ∧ . . . ∧ ¬bn) in the rewrite system R
13: for all i ∈ {1, . . . ,m} do . recurse for all successors; mark progress
14: prove((si, (b ∧ ¬c ∧ ¬b1 ∧ . . . ∧ ¬bn), r), C, R, true)
15: if b ∧ ¬c ∧ ¬b1 ∧ . . . ∧ ¬bn ∧ ¬d1 ∧ . . . ∧ ¬dm is not unsatisfiable then
16: Recall (l, b, r) as a proof obligation that was not discharged

The if statement on line 17 ensures that all possible cases have been treated, either by implication, or
by circularities, or by implication. In practice, before being sent to the SMT solver, the existential closure
of the conditions in line 17 with respect to the variables on the left-hand side of the rewrite/circularity
rules is computed.



A reachability property is successfully proved if there are no remaining proof obligation after the
procedure ends. If the proof procedure successfully proves all circularities in C, then the set of reachability
properties in C hold, assuming that the terms on the left-hand side terminate. The successors of a
constrained term are computed using the algorithm described in Section 3.1. The soundness of our
algorithm is justified by the proof systems presented in [22,7].
More Challenging Examples
Proofs of programs. In this section, we would like to discuss the capabilities of our tool in terms of the
type and size of problems it can handle by studying its result on a more complex case study. It has
been shown that the operational semantics of any programming language can be faithfully encoded by
rewrite rules of the form l ⇒ r if b ([32]). If we encode the operational semantics as a CTRS, then a
constrained term represents a symbolic program. Proving partial correctness of a program amounts to
proving a reachability property for the respective constrained term.

To demonstrate this capability, we have encoded the operational semantics of a simple imperative
language IMP as a CTRS. Because of space limitations, we cannot include its definition, which is available
on the web page of the tool. The definition of IMP consists of 14 sorts, 7 subsorting relations, 48 function
symbols including built-ins and 45 rewrite rules. The following term is a symbolic IMP program that
computes the sum of the first N natural numbers:

1 I(push(seq(assign(x, N), seq(assign(y, mzero), seq(assign(z, mzero),
while(le(y, x), seq(assign(z, plus(z, y)),

assign(y, plus(y, mone))))))), done), emp)

The function symbol I constructs IMP configurations which consist of a stack of code and an envi-
ronment. There is a single element on the stack consisting of the program to execute (push(·, done))
and the environment is empty (emp). We can prove that the program indeed computes the sum of the
first N natural numbers by using the prove command with a single helper circularity, which encodes the
invariant of the while loop.

The proof succeeds with a wall time of 33 seconds on a typical laptop. Almost the entire execution
time is spent calling the SMT solver. The proof tree of the second circularity reaches a depth of 103 proof
steps.

Reachability properties with existential quantifiers. At the start of the article, we have promised that
our tool can establish properties of the form:

∀x̃.(c1(x̃)→ ∃ỹ.(c2(x̃, ỹ) ∧ t1(x̃) V∗R t2(x̃, ỹ))). (3)

However, RMT only implements rewrite rules of the form u⇒ v if b, which intuitively correspond to the
first-order formula ∀x̃.(b(x̃)→ u(x̃)⇒R v(x̃)).

In order to establish properties such as the one in Equation (3), we make the following auxiliary
construction: we consider a fresh distinguished symbol ok and we add to R the following rewrite rule:
R′ = R ∪ {t2(x̃, ỹ) ⇒ ok(x̃) if c2(x̃, ỹ)}. We then have that the formula in Equation (3) holds iff
R′ |= t1(x̃) V+ ok(x̃) if c1(x̃). We use this encoding in order to prove the correctness of the extended
algorithm of Euclid in Section 1.

Discussion and Further Work
In this article, we have presented RMT, a tool for proving reachability properties in constrained term
rewriting systems. RMT is available at http://profs.info.uaic.ro/˜stefan.ciobaca/rmt, along with
all examples used in this article. The procedure implemented in RMT for establishing reachability prop-
erties is based on proof systems developed in our previous work ([22,7]) and it is sound for terminating
paths. We developed RMT to fill a gap in the set of tools for CTRSs: there are tools that establish termi-
nation, confluence and equivalence of terms, but no tools for reachability, except for specialized rewrite
systems occurring in programming languages research ([8]). We want RMT to be easy to use and simple to
incorporate by the research community into other applications. Some of the code in RMT, in particular the
data structures used for terms, is an expanded version of previous code written by the first author ([5])
for security protocol analysis.

Related work. The best tool for everything related to rewriting is Maude ([10]). Recently, Rocha and
others ([26]) extended Maude to provide rewriting modulo SMT. This extension makes Maude suitable for
the same kind of rewriting techniques described in this article. Unfortunately, rewriting modulo SMT in
Maude is only implemented for topmost rewrite theories. Almost any theory can be written as a topmost

http://profs.info.uaic.ro/~stefan.ciobaca/rmt


theory ([23]), but in our experience the encoding can significantly increase the number of transitions,
which produces performance concerns. For example, in our CTRLs for the IMP language, the depth of
the proof tree for proving the sum program is significantly lower in IMP than in topmost IMP.

The K framework ([31]) by Roşu and others is the best tool to define the semantics of real programming
languages as a rewrite theory. It has been used, for example, to define the complete rewriting-based
operational semantics of the languages C ([15]), Java ([4]) and JavaScript ([25]). Recently, the same proof
systems ([22,7]) that we have implemented for reachability proofs in CTRSs has been implemented in
K ([8]) and used to prove a number of programs written in several languages. The main difference is that
the implementation in [8] is tailored for the operational semantics of languages, with special cases for
constructs that occur frequently in programming languages such as heaps. However, our tool is aimed at a
more general public as it is meant to be used for any CTRS, even if it would not perform as well on rewrite
systems defining operational semantics; it is easier to install because it has fewer dependencies (only Z3)
and it feels more robust. Additionally, the algorithm in [8] contains a small source of incompleteness, as
when proving a reachability property it is either discharged completely through implication or through
circularities/rewrite rules. We allow a reachability rule to be discharged partially by implication and
partially by reachability/rewrites, as explained in Algorithm 2. However, RMT is also incomplete, since it
does not fully implement the relatively complete proof system in [7].

Reachability in rewriting is explored in depth in [11]. The work by Kirchner and others ([16]) is the
first to propose the use of rewriting with symbolic constraints for deduction. Subsequent work ([26,18])
extends and unifies previous approaches to rewriting with constraints. The section on related work in [26]
contains a comprehensive account of literature related to rewriting modulo constraints.

Future work. For future work, we would like to overcome several engineering and research challenges.
On the engineering side, we would like to speed up the tool by interacting better with the SMT solver and
by using term indexing techniques, but also to ease reachability proofs by providing an interactive proof
environment. We will experiment with other SMT solvers such as CVC4 [2], for which we already have a
compile-time option, but which does not perform as well as Z3, especially because of its weak support for
non-linear arithmetic. We would also like to integrate with the Maude rewrite tool to access its rewriting
capabilities and with the K tool in order to access realistic language definitions. On the research side,
we would like to add user defined functions, overcome the technical limitations that we have imposed on
the built-in signature, allow quantifiers in the constraints, use rewriting modulo AC and implement out
proof system for equivalence ([6]). We would also like to extract from RMT a well-documented and fast
API for unification and rewriting modulo constraints, which could be used to quickly prototype research
tools based on symbolic rewriting.
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7. Andrei Ştefănescu, Ştefan Ciobâcă, Radu Mereuţă, Brandon M. Moore, Traian Florin Şerbănuţă, and Grigore
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Built-in Variant Generation and Unification, and Their Applications in Maude 2.7. In IJCAR 2016, pages
183–192, 2016.
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31. Grigore Roşu and Traian Florin Şerbănuţă. An Overview of the K Semantic Framework. Journal of Logic

and Algebraic Programming, 79(6):397–434, 2010.
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