Published in Volume XXVII, Issue 1, 2017, pages 1-18, doi: 10.7561/SACS.2017.1.1

Authors: J.A. Bergstra, I. Bethke

Abstract

Meadows—commutative rings equipped with a total inversion operation—can be axiomatized by purely equational means. We study subvarieties of the variety of meadows obtained by extending the equational theory and expanding the signature.

Full Text (PDF)

References

[1] J.A. Bergstra and I. Bethke. A negative result on the algebraic specifications of the meadow of rational numbers. arXiv:1507.00548 [math.RA], 2016.

[2] J.A. Bergstra, I. Bethke, and A. Ponse. Cancellation Meadows: A Generic Basis Theorem and Some Applications. The Computer Journal, 56(1):3–14, 2013 doi:10.1093/comjnl/bxs028.

[3] J.A. Bergstra, I. Bethke, and A. Ponse. Equations for formally real meadows. Journal of Applied Logic, 13(2):1–23, 2015. doi:10.1016/j.jal.2015.01.004.

[4] J.A. Bergstra and C.A. Middelburg. Inversive meadows and divisive meadows. Journal of Applied Logic, 9(3):203–220, 2011. doi:10.1016/j.jal.2011.03.001.

[5] J.A. Bergstra and J.V. Tucker. The rational numbers as an abstract data type. Journal of the ACM, 54(2), Article 7, 2007. doi: 10.1145/1219092.1219095.

[6] I. Bethke and P. Rodenburg. The initial meadows. Journal of Symbolic Logic, 75(3): 888–895, 2010. doi:10.2178/jsl/1278682205.

[7] I. Bethke, P. Rodenburg, and A. Sevenster. The structure of finite meadows. Journal of Logical and Algebraic Methods in Programming, 84(2): 276–282, 2015. doi:10.1016/j.jlamp.2014.08.004.

[8] D. Bjørner and M.C. Henson (eds). Logics of Specification Languages. Monographs in Theoretical Computer Science, an EATCS Series. Springer, 2007. 10.1007/978-3-540-74107-7.

[9] S. Burris and H.P. Sankappanavar. A Course in Universal Algebra. Springer Verlag, 1981.

[10] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Initial algebra semantics and continuous algebras. Journal of the ACM, 24(1):68–95, 1977. 10.1145/321992.321997.

[11] G. Grätzer. Universal Algebra (2nd ed.), Springer-Verlag, 1979. 10.1007/978-0-387-77487-9.

[12] T.E. Hall. Identities for existence varieties of regular semigroups. Bulletin of the Australian Mathematical Society, 40(1):59–77, 1989. 10.1017/S000497270000349X.

[13] Y. Komori. Free algebras over all fields and pseudo-fields. Reports of Faculty of Science, Shizuoka University, 10:9–15, 1975. 10.14945/00008858.

[14] R.N. McKenzie, G.F. Mc Nulty, and W.F. Taylor. Algebras, lattices, varieties, Wadsworth & Brooks, Monterey, California, 1987.

[15] A. Robinson. Complete theories. Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam-New York- Oxford, 1977.

[16] J. von Neumann. On regular rings. Proceedings of the National Academy of Sciences of the United States of America, 22(12):707–712, 1936.

[17] W. Wechler. Universal Algebra for Computer Scientists. Monographs in Theoretical Computer Science, an EATCS Series. Springer, 1992. 10.1007/978-3-642-76771-5.

[18] M. Wirsing. Algebraic Specification. In J. van Leeuwen (ed.), Handbook of Theretical Computer Science, Vol. B (Formal Models and Semantics), pp. 675–788. Elsevier, 1990.

Bibtex

@article{sacscuza:bergstra2017sotvom,
  title={Subvarieties of the Variety of Meadows},
  author={J.A. Bergstra and I. Bethke},
  journal={Scientific Annals of Computer Science},
  volume={27},
  number={1},
  organization={``A.I. Cuza'' University, Iasi, Romania},
  year={2017},
  pages={1--18},
  doi={10.7561/SACS.2017.1.1},
  publisher={``A.I. Cuza'' University Press}
}