Published in Volume XXXIII, Issue 1, 2023, pages 5–34, doi: 10.7561/SACS.2023.1.5

Authors: G. Georgescu


The reticulation L(R) of a commutative ring R was introduced by Joyal in 1975, then the theory was developed by Simmons in a remarkable paper published in 1980. L(R) is a bounded distributive algebra whose main property is that the Zariski prime spectrum Spec(R) of R and the Stone prime spectrum SpecId (L(R)) of L(R) are homeomorphic. The construction of the lattice L(R) was generalized by Belluce for each unital ring R and the reticulation was defined by axioms.

In a recent paper we generalized the Belluce construction for algebras in a semidegenerate congruence-modular variety V. For any algebra A ∈ V we defined a bounded distributive lattice L(A), but in general the prime spectrum Spec(A) of A is not homeomorphic with the prime spectrum SpecId (L(A)). We introduced the quasi-commutative algebras in the variety V (as a generalization of Belluce’s quasi-commutative rings) and proved that for any algebra A ∈ V, the spectra Spec(A) and SpecId (L(A)) are homeomorphic.

In this paper we define the reticulation A ∈ V by four axioms and prove that any two reticulations of A are isomorphic lattices. By using the uniqueness of reticulation and other results from the mentioned paper, we obtain a characterization theorem for the algebras A ∈ V that admit a reticulation: A is quasi-commutative if and only if A admits a reticulation. This result is a universal algebra generalization of the following Belluce theorem: a ring R is quasi-commutative if and only if R admits a reticulation.

Another subject treated in this paper is the spectral closure of the prime spectrum Spec(A) of an algebra A ∈ V, a notion that generalizes the Belluce spectral closure of the prime spectrum of a ring.

Full Text (PDF)


[1] Paolo Agliano. Prime spectra in modular varieties. Algebra Universalis, 30:581–597, 1993. doi:10.1007/BF01195383.

[2] Hasan Al-Ezeh. Further results on reticulated rings. Acta Mathematica Hungarica, 60:1–6, 1992. doi:10.1007/BF00051752.

[3] Michael Francis Atiyah and I. G. MacDonald. Introduction to Commutative algebra. Addison-Wesley-Longman, 1969. doi:10.1201/9780429493621.

[4] Raymond Balbes and Philip Dwinger. Distributive Lattices. University of Missouri Press, 1974.

[5] Lawrence P. Belluce. Semisimple algebras of infinite valued logic and bold fuzzy set theory. Canadian Journal of Mathematics, 38(6):1356–1379, 1986. doi:10.4153/CJM-1986-069-0.

[6] Lawrence P. Belluce. Spectral spacess and non-commutative rings. Communications in Algebra, 19(7):1855–1865, 1991. doi:10.1080/00927879108824234.

[7] Lawrence P. Belluce. Spectral closure for non-commutative rings. Communications in Algebra, 25(5):1513–1536, 1997. doi:10.1080/00927879708825933.

[8] Garrett Birkhoff. Lattice Theory, 3rd edition, volume 25 of American Mathematical Society Colloquium Publications. 1967.

[9] Stanley Burris and Hanamantagouda P. Sankappanavar. A Course in Universal Algebra, volume 78 of Graduate texts in mathematics. Springer, 1981.

[10] Dumitru Busneag, Dana Piciu, and Mihaela Istrata. The Belluce lattice associated with a bounded BCK -algebra. Journal of Algebraic Hyperstructures and Logical Algebras, 2(1):1–16, 2021. doi:10.52547/HATEF.JAHLA.2.1.1.

[11] Daniela Cheptea. Spectral closure of the quantales. Analele Universitǎţii Bucureşti, pages 15–28, 2001.

[12] Max Dickmann, Niels Schwartz, and Marcus Tressl. Spectral Spaces. New Mathematical Monographs. Cambridge University Press, 2019. doi:10.1017/9781316543870.

[13] Alberto Facchini, Carmelo Antonio Finocchiaro, and George Janelidze. Abstractly constructed prime spectra. Algebra Universalis, 83:1–38, 2022. doi:10.1007/s00012-021-00764-z.

[14] Ralph Fresee and Ralph McKenzie. Commutator Theory for Congruence Modular Varieties, volume 125 of London Mathematical Society Lecture Notes. Cambridge University Press, 1987.

[15] George Georgescu. Reticulation functor and the transfer properties. CoRR, abs/2205.02174, 2022. arXiv:2205.02174.

[16] George Georgescu. Reticulation of quasi-commutative algebras. Journal of Mahani Mathematical Research, 12(2):115–136, 2022. doi:10.22103/jmmr.2022.20133.1328.

[17] George Georgescu, Léonard Kwuida, and Claudia Mureşan. Functorial properties of the reticulation of a universal algebra. IfCoLog Journal of Logics and their Applications, 8(5):1123–1168, 2020. doi:10.24451/arbor.15214.

[18] George Georgescu and Claudia Muresan. The reticulation of a universal algebra. Scientific Annals of Computer Science, 28(1):67–113, 2018. doi:10.7561/SACS.2018.1.67.

[19] Melvin Hochster. Prime ideal structure in commutative rings. Transactions of the American Mathematical Society, 142:43–60, 1969. doi:10.2307/1995344.

[20] Peter Jipsen. Generalizations of Boolean products for lattice-ordered algebras. Annals of Pure and Applied Logic, 161(2):228–234, 2009. doi:10.1016/j.apal.2009.05.005.

[21] Peter T. Johnstone. Stone Spaces, volume 3 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1982.

[22] Matias Menni Jose Louis Castiglioni and William J. Zuluaga Botero. A representation theorem for integral rigs and its applications to residuated lattices. Journal of Pure and Applied Algebra, 220(10):3533–3566, 2016. doi:10.1016/j.jpaa.2016.04.014.

[23] André Joyal. Les théorèms de Chevalley – Tarski et remarques sur l’algèbre constructive. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 16:256–258, 1975.

[24] Irving Kaplansky. Topics in Commutative Ring Theory. Chicago Lectures in Mathematics. Department of Mathematics, University of Chicago, 1974.

[25] Igor Klep and Marcus Tressl. The prime spectrum and the extended prime spectrum of noncommutative rings. Algebras and Representation Theory, 10:257–270, 2007. doi:10.1007/s10468-006-9009-2.

[26] János Kollár. Congruences and one element subalgebras. Algebra Universalis, 9:266–267, 1979. doi:10.1007/BF02488038.

[27] Tomasz Kowalski and Hiroakira Ono. Residuated lattices: An algebraic glimpse at logics without contraction. Japan Advanced Institute of Science and Technology, 2001.

[28] Giacomo Lenzi and Antonio Di Nola. The spectrum problem for abelian l – groups and M V – algebras. Algebra Universalis, 81, 2020. Article number 39. doi:10.1007/s00012-020-00668-4.

[29] Laurenţiu Leuştean. The maximal and prime spectra of BL-algebras and the reticulation of BL-algebras. Central European Journal of Mathematics, 1(3):382–397, 2003. doi:10.2478/BF02475217.

[30] Laurenţiu Leuştean. Representations of Many-valued Algebras. Editura Universitară, Bucharest, 2010.

[31] Claudia Mureşan. The reticulation of a residuated lattice. Bulletin Mathèmatique de la Sociètè des Sciences Mathèmatiques de Roumanie, 51(1):47–65, 2008. URL:

[32] Claudia Mureşan. Algebras of Many-valued Logic. Contributions to the Theory of Residuated Lattices. PhD thesis, Bucharest University, 2009.

[33] Claudia Mureşan. Characterization of the reticulation of a residuated lattice. Journal of Multiple-Valued Logic, 16(3-5):427–447, 2010.

[34] Tomasz Kowalski Nikolaos Galatos, Peter Jipsen and Hiroakira Ono. Residuated Lattices: An Algebraic Glimpse at Structural Logics, volume 151 of Studies in Logic and The Foundation of Mathematics. Elsevier, 2007.

[35] Yashshree Shiraj Pawar. Reticulation of a 0-distributive lattice. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, 54(1):121–128, 2015.

[36] Harold Simmons. Reticulated rings. Journal of Algebra, 66(1):169–192, 1980. doi:10.1016/0021-8693(80)90118-0.


  title={Semidegenerate Congruence-modular Algebras Admitting a Reticulation},
  author={G. Georgescu},
  journal={Scientific Annals of Computer Science},
  organization={Alexandru Ioan Cuza University, Ia\c si, Rom\^ania},
  publisher={Alexandru Ioan Cuza University Press, Ia\c si},