Published in Volume XXV, Issue 1, 2015, pages 69-88, doi: 10.7561/SACS.2015.1.69

Authors: D. Diaconescu, I. Leuștean

Abstract

Moisil logic, having as algebraic counterpart Łukasiewicz-Moisil algebras, provides an alternative way to reason about vague information based on the following principle: a many-valued event is characterized by a family of Boolean events. However, using the original definition of Łukasiewicz-Moisil algebra, the principle does not apply for subalgebras. In this paper we identify an alternative and equivalent definition for the n-valued Łukasiewicz-Moisil algebras, in which the determination principle is also saved for arbitrary subalgebras, which are characterized by a Boolean algebra and a family of Boolean ideals. As a consequence, we prove a duality result for the n-valued Łukasiewicz-Moisil algebras, starting from the dual space of their Boolean center. This leads us to a duality for MVn-algebras, since are equivalent to a subclass of n-valued Łukasiewicz-Moisil algebras.

Full Text (PDF)

References

[1] V. Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu. Łukasiewicz-Moisil algebras. North-Holland, 1991.

[2] C. C. Chang. Algebraic analysis of many-valued logics. Transactions of the American Mathematical Society 88:467-490, 1958. doi:10.1090/S0002-9947-1958-0094302-9.

[3] R. Cignoli. Algebras de Moisil de orden n. PhD thesis, Universidad Nacional de Sur, Bahia Blanca, 1969.

[4] R. Cignoli. Proper n-valued Łukasiewicz algebras as s-algebras of Łukasiewicz n-valued propositional calculi. Studia Logica 41(1):3-16, 1982. doi:10.1007/BF00373490.

[5] R. Cignoli, I.M.L. D’Ottaviano, D. Mundici. Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic, 2000.

[6] A. Di Nola, A. Lettieri. One chain generated varieties of MV-algebras. Journal of Algebra 225(2):667-697, 2000. doi:10.1006/jabr.1999.8136.

[7] G. Georgescu, A. Popescu. A common generalization for MV-algebras and Łukasiewicz-Moisil algebras. Archive for Mathematical Logic 45(8):947-981, 2006. doi:10.1007/s00153-006-0020-4.

[8] R.S. Grigolia. Algebraic analysis of Łukasiewicz-Tarski’s logical systems. In R. Wójcicki and G. Malinowski, editors, Selected Papers on Łukasiewicz Sentensial Calculi, pages 81-92. Osolineum, Wroclaw, 1977.

[9] A. Iorgulescu. Connections between MVn algebras and n-valued Łukasiewicz-Moisil algebras – I. Discrete Mathematics 181:155-177, 1998. doi:10.1016/S0012-365X(97)00052-6.

[10] A. Iorgulescu. Connections between MVn algebras and n-valued Łukasiewicz-Moisil algebras – II. Discrete Mathematics 202:113-134, 1999. doi:10.1016/S0012-365X(98)00289-1.

[11] A. Iorgulescu. Connections between MVn algebras and n-valued Łukasiewicz-Moisil algebras – IV. The Journal of Universal Computer Science 6(1):139-154, 2000. doi:10.3217/jucs-006-01-0139.

[12] I. Leuștean. A determination principle for algebras of n-valued Łukasiewicz logic. Journal of Algebra 320(10):3694-3719, 2008. doi:10.1016/j.jalgebra.2008.03.038.

[13] J. Łukasiewicz. O logice trójwartośsciowej. Ruch. Filozoficzny 5:169-171, 1920.

[14] J. Łukasiewicz, A. Tarski. Untersuchungen uber den aussagenkalkul. C. R. Soc. Scéeances Soc. Sci. Lettres Varsovie, CL. III, 23:30-50, 1930.

[15] Gr. C. Moisil. Recherches sur les logiques non-chrysippiennes. Ann. Sci. Univ. Jassy, 26:431-460, 1940.

[16] Gr. C. Moisil. Notes sur les logiques non-chrysippiennes. Ann. Sci. Univ. Jassy, 27:86-98, 1941.

[17] Gr. C. Moisil. Essais sur les logiques non-chrysippiennes. Editions de l’Academie de la Republique Socialiste de Roumanie, Bucharest, 1972.

Bibtex

@article{sacscuza:diaconescu2015menotiml,
  title={Mutually Exclusive Nuances of Truth in Moisil Logic},
  author={D. Diaconescu and I. Leu{c s}tean},
  journal={Scientific Annals of Computer Science},
  volume={25},
  number={1},
  organization={``A.I. Cuza'' University, Iasi, Romania},
  year={2015},
  pages={69--88},
  doi={10.7561/SACS.2015.1.69},
  publisher={``A.I. Cuza'' University Press}
}