Published in Volume XXV, Issue 1, 2015, pages 29-67, doi: 10.7561/SACS.2015.1.29

Authors: D. Cheptea, G. Georgescu, C. Mureșan


In this paper, we introduce the lifting properties for the Boolean elements of bounded distributive lattices with respect to the congruences, filters and ideals, we establish how they relate to each other and to significant algebraic properties, and we determine important classes of bounded distributive lattices which satisfy these lifting properties

Full Text (PDF)


[1] D. D. Anderson, V. P. Camillo. Commutative Rings Whose Elements Are a Sum of a Unit and an Idempotent. Commutative Algebra 30(7), 3327–3336, 2002. doi:10.1081/AGB-120004490.

[2] R. Balbes, P. Dwinger. Distributive Lattices. University of Missouri Press, Columbia, Missouri, 1974.

[3] G. Birkhoff. Lattice Theory. American Mathematical Society Colloquium Publications, Vol. 25, Providence, Rhode Island, Third Edition, 1973.

[4] T. S. Blyth. Lattices and Ordered Algebraic Structures. Springer–Verlag London Limited, 2005. doi:10.1007/b139095.

[5] A. Brezuleanu, R. Diaconescu. Sur la duale de la categorie des treillis. Revue Roumaine de Mathématiques Pures et Appliquées 14, 311–323, 1969.

[6] V. P. Camillo, H. P. Yu. Exchange Rings, Units and Idempotents. Communications in Algebra 22(12), 4737–4749, 1994. doi:10.1080/00927879408825098.

[7] D. Cheptea, G. Georgescu, C. Mureșan. Algebraic and Topological Results on Lifting Properties in Residuated Lattices (submitted).

[8] T. Coquand, H. Lombardi, C. Quitte. Dimension de Heitmann des Treillis Distributifs et des Anneaux Commutatifs. Publications Mathématiques de Besan¸con. Algèbre et The´orie des Nombres, 57– 100, 2003–2006.

[9] A. Di Nola, G. Georgescu, L. Leuştean. Boolean Products of BL– algebras. Journal of Mathematical Analysis and Applications 251(1), 106–131, 2000. doi:10.1006/jmaa.2000.7024.

[10] A. Filipoiu, G. Georgescu, A. Lettieri. Maximal MV–algebras. Mathware & Soft Computing 4(1), 53–62, 1997.

[11] G. Georgescu, L. Leuştean, C. Mureșan. Maximal Residuated Lattices with Lifting Boolean Center. Algebra Universalis 63(1), 83–99, February 2010. doi:10.1007/s00012-010-0066-3.

[12] G. Georgescu, C. Mureșan. Boolean Lifting Property for Residuated Lattices. Soft Computing 18(11), 2075–2089, November 2014. doi: 10.1007/s00500-014-1318-5.

[13] G. Grätzer. General Lattice Theory. Birkhäuser Akademie–Verlag, Basel–Boston–Berlin, 1978.

[14] B. J´onsson. Congruence Distributive Varieties. Mathematica Japonica 42(2), 353–401, 1995.

[15] P. T. Johnstone. Stone Spaces. Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, Cambridge/London/New York/New Rochelle/Melbourne/Sydney, 1982.

[16] T. Y. Lam. Lectures on Modules and Rings. Graduate Texts in Mathematics 189, Springer–Verlag, 1999.

[17] L. Leuştean. Representations of Many–valued Algebras. Editura Universitară, Bucharest, 2010.

[18] C. Mureșan. Algebras of Many–valued Logics. Contributions to the Theory of Residuated Lattices. Ph. D. Thesis, University of Bucharest, Bucharest, 2010.

[19] C. Mureșan. Characterization of the Reticulation of a Residuated Lattice. Journal of Multiple–valued Logic and Soft Computing 16 (3–5), Special Issue: Multiple–valued Logic and Its Algebras, 427–447, 2010.

[20] C. Mureșan. Dense Elements and Classes of Residuated Lattices. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie 53 (101), No. 1, 11–24, 2010.

[21] W. K. Nicholson. Lifting Idempotents and Exchange Rings. Transactions of the American Mathematical Society 229, 269–278, 1977. doi:10. 1090/S0002-9947-1977-0439876-2.

[22] R. Padmanabhan, S. Rudeanu. Axioms for Lattices and Boolean Algebras. World Scientific Publ. Co., Hackensack, NJ, 2008.


  title={Boolean Lifting Properties for Bounded Distributive Lattices},
  author={D. Cheptea and G. Georgescu and C. Mure{c s}an},
  journal={Scientific Annals of Computer Science},
  organization={``A.I. Cuza'' University, Iasi, Romania},
  publisher={``A.I. Cuza'' University Press}